MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1lo12 Structured version   Unicode version

Theorem o1lo12 13014
Description: A lower bounded real function is eventually bounded iff it is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1lo1.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
o1lo12.2  |-  ( ph  ->  M  e.  RR )
o1lo12.3  |-  ( (
ph  /\  x  e.  A )  ->  M  <_  B )
Assertion
Ref Expression
o1lo12  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <-> 
( x  e.  A  |->  B )  e.  <_O(1) ) )
Distinct variable groups:    x, A    x, M    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem o1lo12
StepHypRef Expression
1 o1dm 13006 . . 3  |-  ( ( x  e.  A  |->  B )  e.  O(1)  ->  dom  ( x  e.  A  |->  B )  C_  RR )
21a1i 11 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  ->  dom  ( x  e.  A  |->  B ) 
C_  RR ) )
3 lo1dm 12995 . . 3  |-  ( ( x  e.  A  |->  B )  e.  <_O(1)  ->  dom  ( x  e.  A  |->  B )  C_  RR )
43a1i 11 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_O(1)  ->  dom  ( x  e.  A  |->  B ) 
C_  RR ) )
5 o1lo1.1 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
65ralrimiva 2797 . . . . 5  |-  ( ph  ->  A. x  e.  A  B  e.  RR )
7 dmmptg 5333 . . . . 5  |-  ( A. x  e.  A  B  e.  RR  ->  dom  ( x  e.  A  |->  B )  =  A )
86, 7syl 16 . . . 4  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
98sseq1d 3381 . . 3  |-  ( ph  ->  ( dom  ( x  e.  A  |->  B ) 
C_  RR  <->  A  C_  RR ) )
10 simpr 461 . . . . . 6  |-  ( (
ph  /\  A  C_  RR )  ->  A  C_  RR )
115renegcld 9773 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  RR )
1211adantlr 714 . . . . . 6  |-  ( ( ( ph  /\  A  C_  RR )  /\  x  e.  A )  ->  -u B  e.  RR )
13 o1lo12.2 . . . . . . 7  |-  ( ph  ->  M  e.  RR )
1413adantr 465 . . . . . 6  |-  ( (
ph  /\  A  C_  RR )  ->  M  e.  RR )
1514renegcld 9773 . . . . . 6  |-  ( (
ph  /\  A  C_  RR )  ->  -u M  e.  RR )
16 o1lo12.3 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  M  <_  B )
1713adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  M  e.  RR )
1817, 5lenegd 9916 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( M  <_  B  <->  -u B  <_  -u M ) )
1916, 18mpbid 210 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  -u B  <_ 
-u M )
2019ad2ant2r 746 . . . . . 6  |-  ( ( ( ph  /\  A  C_  RR )  /\  (
x  e.  A  /\  M  <_  x ) )  ->  -u B  <_  -u M
)
2110, 12, 14, 15, 20ello1d 12999 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  ( x  e.  A  |->  -u B )  e. 
<_O(1) )
225o1lo1 13013 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <-> 
( ( x  e.  A  |->  B )  e. 
<_O(1)  /\  ( x  e.  A  |->  -u B )  e. 
<_O(1) ) ) )
2322rbaibd 901 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  |->  -u B
)  e.  <_O(1) )  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <->  ( x  e.  A  |->  B )  e. 
<_O(1) ) )
2421, 23syldan 470 . . . 4  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <->  ( x  e.  A  |->  B )  e. 
<_O(1) ) )
2524ex 434 . . 3  |-  ( ph  ->  ( A  C_  RR  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <-> 
( x  e.  A  |->  B )  e.  <_O(1) ) ) )
269, 25sylbid 215 . 2  |-  ( ph  ->  ( dom  ( x  e.  A  |->  B ) 
C_  RR  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <->  ( x  e.  A  |->  B )  e.  <_O(1) ) ) )
272, 4, 26pm5.21ndd 354 1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <-> 
( x  e.  A  |->  B )  e.  <_O(1) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2713    C_ wss 3326   class class class wbr 4290    e. cmpt 4348   dom cdm 4838   RRcr 9279    <_ cle 9417   -ucneg 9594   O(1)co1 12962   <_O(1)clo1 12963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-pre-sup 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-2nd 6576  df-recs 6830  df-rdg 6864  df-er 7099  df-pm 7215  df-en 7309  df-dom 7310  df-sdom 7311  df-sup 7689  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-div 9992  df-nn 10321  df-2 10378  df-3 10379  df-n0 10578  df-z 10645  df-uz 10860  df-rp 10990  df-ico 11304  df-seq 11805  df-exp 11864  df-cj 12586  df-re 12587  df-im 12588  df-sqr 12722  df-abs 12723  df-o1 12966  df-lo1 12967
This theorem is referenced by:  dirith2  22775  vmalogdivsum2  22785  pntrlog2bndlem4  22827
  Copyright terms: Public domain W3C validator