MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1lo1 Structured version   Unicode version

Theorem o1lo1 13594
Description: A real function is eventually bounded iff it is eventually lower bounded and eventually upper bounded. (Contributed by Mario Carneiro, 25-May-2016.)
Hypothesis
Ref Expression
o1lo1.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
Assertion
Ref Expression
o1lo1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <-> 
( ( x  e.  A  |->  B )  e. 
<_O(1)  /\  ( x  e.  A  |->  -u B )  e. 
<_O(1) ) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem o1lo1
Dummy variables  m  c  n  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1dm 13587 . . 3  |-  ( ( x  e.  A  |->  B )  e.  O(1)  ->  dom  ( x  e.  A  |->  B )  C_  RR )
21a1i 11 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  ->  dom  ( x  e.  A  |->  B ) 
C_  RR ) )
3 lo1dm 13576 . . . 4  |-  ( ( x  e.  A  |->  B )  e.  <_O(1)  ->  dom  ( x  e.  A  |->  B )  C_  RR )
43adantr 467 . . 3  |-  ( ( ( x  e.  A  |->  B )  e.  <_O(1)  /\  ( x  e.  A  |-> 
-u B )  e. 
<_O(1) )  ->  dom  ( x  e.  A  |->  B ) 
C_  RR )
54a1i 11 . 2  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  e.  <_O(1)  /\  ( x  e.  A  |->  -u B
)  e.  <_O(1) )  ->  dom  ( x  e.  A  |->  B ) 
C_  RR ) )
6 o1lo1.1 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
76ralrimiva 2840 . . . . 5  |-  ( ph  ->  A. x  e.  A  B  e.  RR )
8 dmmptg 5349 . . . . 5  |-  ( A. x  e.  A  B  e.  RR  ->  dom  ( x  e.  A  |->  B )  =  A )
97, 8syl 17 . . . 4  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
109sseq1d 3492 . . 3  |-  ( ph  ->  ( dom  ( x  e.  A  |->  B ) 
C_  RR  <->  A  C_  RR ) )
11 simpr 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  ->  m  e.  RR )
126adantlr 720 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  A  C_  RR )  /\  x  e.  A )  ->  B  e.  RR )
1312adantlr 720 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  B  e.  RR )
14 simplr 761 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  m  e.  RR )
1513, 14absled 13486 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  ( ( abs `  B )  <_  m 
<->  ( -u m  <_  B  /\  B  <_  m
) ) )
16 ancom 452 . . . . . . . . . . . . . . . . 17  |-  ( (
-u m  <_  B  /\  B  <_  m )  <-> 
( B  <_  m  /\  -u m  <_  B
) )
17 lenegcon1 10120 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  RR  /\  B  e.  RR )  ->  ( -u m  <_  B 
<-> 
-u B  <_  m
) )
1814, 13, 17syl2anc 666 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  ( -u m  <_  B  <->  -u B  <_  m
) )
1918anbi2d 709 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  ( ( B  <_  m  /\  -u m  <_  B )  <->  ( B  <_  m  /\  -u B  <_  m ) ) )
2016, 19syl5bb 261 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  ( ( -u m  <_  B  /\  B  <_  m )  <->  ( B  <_  m  /\  -u B  <_  m ) ) )
2115, 20bitrd 257 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  ( ( abs `  B )  <_  m 
<->  ( B  <_  m  /\  -u B  <_  m
) ) )
2221imbi2d 318 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  ( (
c  <_  x  ->  ( abs `  B )  <_  m )  <->  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m ) ) ) )
2322ralbidva 2862 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  ->  ( A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  m )  <->  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m )
) ) )
2423rexbidv 2940 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  m )  <->  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m
) ) ) )
2524biimpd 211 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  m )  ->  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m )
) ) )
26 breq2 4425 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  ( B  <_  n  <->  B  <_  m ) )
2726anbi1d 710 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
( B  <_  n  /\  -u B  <_  p
)  <->  ( B  <_  m  /\  -u B  <_  p
) ) )
2827imbi2d 318 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p
) )  <->  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  p ) ) ) )
2928rexralbidv 2948 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p )
)  <->  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  p )
) ) )
30 breq2 4425 . . . . . . . . . . . . . . . 16  |-  ( p  =  m  ->  ( -u B  <_  p  <->  -u B  <_  m ) )
3130anbi2d 709 . . . . . . . . . . . . . . 15  |-  ( p  =  m  ->  (
( B  <_  m  /\  -u B  <_  p
)  <->  ( B  <_  m  /\  -u B  <_  m
) ) )
3231imbi2d 318 . . . . . . . . . . . . . 14  |-  ( p  =  m  ->  (
( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  p
) )  <->  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m ) ) ) )
3332rexralbidv 2948 . . . . . . . . . . . . 13  |-  ( p  =  m  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  p )
)  <->  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m )
) ) )
3429, 33rspc2ev 3194 . . . . . . . . . . . 12  |-  ( ( m  e.  RR  /\  m  e.  RR  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m ) ) )  ->  E. n  e.  RR  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p ) ) )
35343anidm12 1322 . . . . . . . . . . 11  |-  ( ( m  e.  RR  /\  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m )
) )  ->  E. n  e.  RR  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p
) ) )
3611, 25, 35syl6an 548 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  m )  ->  E. n  e.  RR  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p ) ) ) )
3736rexlimdva 2918 . . . . . . . . 9  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  m )  ->  E. n  e.  RR  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p ) ) ) )
38 simplrr 770 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  n  <_  p )  ->  p  e.  RR )
39 simplrl 769 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  -.  n  <_  p )  ->  n  e.  RR )
4038, 39ifclda 3942 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  C_  RR )  /\  (
n  e.  RR  /\  p  e.  RR )
)  ->  if (
n  <_  p ,  p ,  n )  e.  RR )
41 max2 11484 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  RR  /\  p  e.  RR )  ->  p  <_  if (
n  <_  p ,  p ,  n )
)
4241ad2antlr 732 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  p  <_  if ( n  <_  p ,  p ,  n ) )
4312adantlr 720 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  B  e.  RR )
4443renegcld 10048 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  -u B  e.  RR )
45 simplrr 770 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  p  e.  RR )
46 simplrl 769 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  n  e.  RR )
4745, 46ifcld 3953 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  if ( n  <_  p ,  p ,  n )  e.  RR )
48 letr 9729 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
-u B  e.  RR  /\  p  e.  RR  /\  if ( n  <_  p ,  p ,  n )  e.  RR )  -> 
( ( -u B  <_  p  /\  p  <_  if ( n  <_  p ,  p ,  n ) )  ->  -u B  <_  if ( n  <_  p ,  p ,  n ) ) )
4944, 45, 47, 48syl3anc 1265 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  (
( -u B  <_  p  /\  p  <_  if ( n  <_  p ,  p ,  n )
)  ->  -u B  <_  if ( n  <_  p ,  p ,  n ) ) )
5042, 49mpan2d 679 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  ( -u B  <_  p  ->  -u B  <_  if ( n  <_  p ,  p ,  n ) ) )
51 lenegcon1 10120 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  RR  /\  if ( n  <_  p ,  p ,  n )  e.  RR )  -> 
( -u B  <_  if ( n  <_  p ,  p ,  n )  <->  -u if ( n  <_  p ,  p ,  n )  <_  B
) )
5243, 47, 51syl2anc 666 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  ( -u B  <_  if (
n  <_  p ,  p ,  n )  <->  -u if ( n  <_  p ,  p ,  n )  <_  B
) )
5350, 52sylibd 218 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  ( -u B  <_  p  ->  -u if ( n  <_  p ,  p ,  n )  <_  B ) )
54 max1 11482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  RR  /\  p  e.  RR )  ->  n  <_  if (
n  <_  p ,  p ,  n )
)
5554ad2antlr 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  n  <_  if ( n  <_  p ,  p ,  n ) )
56 letr 9729 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  RR  /\  n  e.  RR  /\  if ( n  <_  p ,  p ,  n )  e.  RR )  -> 
( ( B  <_  n  /\  n  <_  if ( n  <_  p ,  p ,  n ) )  ->  B  <_  if ( n  <_  p ,  p ,  n ) ) )
5743, 46, 47, 56syl3anc 1265 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  (
( B  <_  n  /\  n  <_  if ( n  <_  p ,  p ,  n )
)  ->  B  <_  if ( n  <_  p ,  p ,  n ) ) )
5855, 57mpan2d 679 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  ( B  <_  n  ->  B  <_  if ( n  <_  p ,  p ,  n ) ) )
5953, 58anim12d 566 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  (
( -u B  <_  p  /\  B  <_  n )  ->  ( -u if ( n  <_  p ,  p ,  n )  <_  B  /\  B  <_  if ( n  <_  p ,  p ,  n ) ) ) )
6059ancomsd 456 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  (
( B  <_  n  /\  -u B  <_  p
)  ->  ( -u if ( n  <_  p ,  p ,  n )  <_  B  /\  B  <_  if ( n  <_  p ,  p ,  n ) ) ) )
6143, 47absled 13486 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  (
( abs `  B
)  <_  if (
n  <_  p ,  p ,  n )  <->  (
-u if ( n  <_  p ,  p ,  n )  <_  B  /\  B  <_  if ( n  <_  p ,  p ,  n )
) ) )
6260, 61sylibrd 238 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  (
( B  <_  n  /\  -u B  <_  p
)  ->  ( abs `  B )  <_  if ( n  <_  p ,  p ,  n ) ) )
6362imim2d 55 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  (
( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p
) )  ->  (
c  <_  x  ->  ( abs `  B )  <_  if ( n  <_  p ,  p ,  n ) ) ) )
6463ralimdva 2834 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  C_  RR )  /\  (
n  e.  RR  /\  p  e.  RR )
)  ->  ( A. x  e.  A  (
c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p )
)  ->  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  if ( n  <_  p ,  p ,  n ) ) ) )
6564reximdv 2900 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  C_  RR )  /\  (
n  e.  RR  /\  p  e.  RR )
)  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p ) )  ->  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  if ( n  <_  p ,  p ,  n ) ) ) )
66 breq2 4425 . . . . . . . . . . . . . 14  |-  ( m  =  if ( n  <_  p ,  p ,  n )  ->  (
( abs `  B
)  <_  m  <->  ( abs `  B )  <_  if ( n  <_  p ,  p ,  n ) ) )
6766imbi2d 318 . . . . . . . . . . . . 13  |-  ( m  =  if ( n  <_  p ,  p ,  n )  ->  (
( c  <_  x  ->  ( abs `  B
)  <_  m )  <->  ( c  <_  x  ->  ( abs `  B )  <_  if ( n  <_  p ,  p ,  n ) ) ) )
6867rexralbidv 2948 . . . . . . . . . . . 12  |-  ( m  =  if ( n  <_  p ,  p ,  n )  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  m )  <->  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  if (
n  <_  p ,  p ,  n )
) ) )
6968rspcev 3183 . . . . . . . . . . 11  |-  ( ( if ( n  <_  p ,  p ,  n )  e.  RR  /\ 
E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  if ( n  <_  p ,  p ,  n ) ) )  ->  E. m  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  m ) )
7040, 65, 69syl6an 548 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  C_  RR )  /\  (
n  e.  RR  /\  p  e.  RR )
)  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p ) )  ->  E. m  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  m ) ) )
7170rexlimdvva 2925 . . . . . . . . 9  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. n  e.  RR  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p
) )  ->  E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  m )
) )
7237, 71impbid 194 . . . . . . . 8  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  m )  <->  E. n  e.  RR  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p
) ) ) )
73 rexanre 13403 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p )
)  <->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n
)  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) ) ) )
7473adantl 468 . . . . . . . . 9  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p
) )  <->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n )  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) ) ) )
75742rexbidv 2947 . . . . . . . 8  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. n  e.  RR  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p
) )  <->  E. n  e.  RR  E. p  e.  RR  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n
)  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) ) ) )
7672, 75bitrd 257 . . . . . . 7  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  m )  <->  E. n  e.  RR  E. p  e.  RR  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n )  /\  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  -u B  <_  p ) ) ) )
77 reeanv 2997 . . . . . . 7  |-  ( E. n  e.  RR  E. p  e.  RR  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n )  /\  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  -u B  <_  p ) )  <-> 
( E. n  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n
)  /\  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) ) )
7876, 77syl6bb 265 . . . . . 6  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  m )  <->  ( E. n  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  n )  /\  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p ) ) ) )
79 rexcom 2991 . . . . . 6  |-  ( E. c  e.  RR  E. m  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  m
)  <->  E. m  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  m ) )
80 rexcom 2991 . . . . . . 7  |-  ( E. c  e.  RR  E. n  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n )  <->  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  n ) )
81 rexcom 2991 . . . . . . 7  |-  ( E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p )  <->  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) )
8280, 81anbi12i 702 . . . . . 6  |-  ( ( E. c  e.  RR  E. n  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  n )  /\  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p ) )  <->  ( E. n  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n
)  /\  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) ) )
8378, 79, 823bitr4g 292 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. c  e.  RR  E. m  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  m )  <->  ( E. c  e.  RR  E. n  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  n )  /\  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p ) ) ) )
84 simpr 463 . . . . . 6  |-  ( (
ph  /\  A  C_  RR )  ->  A  C_  RR )
8512recnd 9671 . . . . . 6  |-  ( ( ( ph  /\  A  C_  RR )  /\  x  e.  A )  ->  B  e.  CC )
8684, 85elo1mpt 13591 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <->  E. c  e.  RR  E. m  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  m ) ) )
8784, 12ello1mpt 13578 . . . . . 6  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  B )  e.  <_O(1)  <->  E. c  e.  RR  E. n  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  n ) ) )
8812renegcld 10048 . . . . . . 7  |-  ( ( ( ph  /\  A  C_  RR )  /\  x  e.  A )  ->  -u B  e.  RR )
8984, 88ello1mpt 13578 . . . . . 6  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  -u B
)  e.  <_O(1)  <->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) ) )
9087, 89anbi12d 716 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( ( x  e.  A  |->  B )  e.  <_O(1)  /\  ( x  e.  A  |-> 
-u B )  e. 
<_O(1) )  <->  ( E. c  e.  RR  E. n  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n
)  /\  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) ) ) )
9183, 86, 903bitr4d 289 . . . 4  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <->  ( ( x  e.  A  |->  B )  e.  <_O(1)  /\  ( x  e.  A  |->  -u B
)  e.  <_O(1) ) ) )
9291ex 436 . . 3  |-  ( ph  ->  ( A  C_  RR  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <-> 
( ( x  e.  A  |->  B )  e. 
<_O(1)  /\  ( x  e.  A  |->  -u B )  e. 
<_O(1) ) ) ) )
9310, 92sylbid 219 . 2  |-  ( ph  ->  ( dom  ( x  e.  A  |->  B ) 
C_  RR  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <->  ( (
x  e.  A  |->  B )  e.  <_O(1)  /\  ( x  e.  A  |-> 
-u B )  e. 
<_O(1) ) ) ) )
942, 5, 93pm5.21ndd 356 1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <-> 
( ( x  e.  A  |->  B )  e. 
<_O(1)  /\  ( x  e.  A  |->  -u B )  e. 
<_O(1) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438    e. wcel 1869   A.wral 2776   E.wrex 2777    C_ wss 3437   ifcif 3910   class class class wbr 4421    |-> cmpt 4480   dom cdm 4851   ` cfv 5599   RRcr 9540    <_ cle 9678   -ucneg 9863   abscabs 13291   O(1)co1 13543   <_O(1)clo1 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-er 7369  df-pm 7481  df-en 7576  df-dom 7577  df-sdom 7578  df-sup 7960  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-n0 10872  df-z 10940  df-uz 11162  df-rp 11305  df-ico 11643  df-seq 12215  df-exp 12274  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-o1 13547  df-lo1 13548
This theorem is referenced by:  o1lo12  13595  o1lo1d  13596  icco1  13597  lo1sub  13687
  Copyright terms: Public domain W3C validator