MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1lo1 Structured version   Unicode version

Theorem o1lo1 13326
Description: A real function is eventually bounded iff it is eventually lower bounded and eventually upper bounded. (Contributed by Mario Carneiro, 25-May-2016.)
Hypothesis
Ref Expression
o1lo1.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
Assertion
Ref Expression
o1lo1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <-> 
( ( x  e.  A  |->  B )  e. 
<_O(1)  /\  ( x  e.  A  |->  -u B )  e. 
<_O(1) ) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem o1lo1
Dummy variables  m  c  n  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1dm 13319 . . 3  |-  ( ( x  e.  A  |->  B )  e.  O(1)  ->  dom  ( x  e.  A  |->  B )  C_  RR )
21a1i 11 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  ->  dom  ( x  e.  A  |->  B ) 
C_  RR ) )
3 lo1dm 13308 . . . 4  |-  ( ( x  e.  A  |->  B )  e.  <_O(1)  ->  dom  ( x  e.  A  |->  B )  C_  RR )
43adantr 465 . . 3  |-  ( ( ( x  e.  A  |->  B )  e.  <_O(1)  /\  ( x  e.  A  |-> 
-u B )  e. 
<_O(1) )  ->  dom  ( x  e.  A  |->  B ) 
C_  RR )
54a1i 11 . 2  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  e.  <_O(1)  /\  ( x  e.  A  |->  -u B
)  e.  <_O(1) )  ->  dom  ( x  e.  A  |->  B ) 
C_  RR ) )
6 o1lo1.1 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
76ralrimiva 2878 . . . . 5  |-  ( ph  ->  A. x  e.  A  B  e.  RR )
8 dmmptg 5504 . . . . 5  |-  ( A. x  e.  A  B  e.  RR  ->  dom  ( x  e.  A  |->  B )  =  A )
97, 8syl 16 . . . 4  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
109sseq1d 3531 . . 3  |-  ( ph  ->  ( dom  ( x  e.  A  |->  B ) 
C_  RR  <->  A  C_  RR ) )
11 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  ->  m  e.  RR )
126adantlr 714 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  A  C_  RR )  /\  x  e.  A )  ->  B  e.  RR )
1312adantlr 714 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  B  e.  RR )
14 simplr 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  m  e.  RR )
1513, 14absled 13228 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  ( ( abs `  B )  <_  m 
<->  ( -u m  <_  B  /\  B  <_  m
) ) )
16 ancom 450 . . . . . . . . . . . . . . . . 17  |-  ( (
-u m  <_  B  /\  B  <_  m )  <-> 
( B  <_  m  /\  -u m  <_  B
) )
17 lenegcon1 10057 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  RR  /\  B  e.  RR )  ->  ( -u m  <_  B 
<-> 
-u B  <_  m
) )
1814, 13, 17syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  ( -u m  <_  B  <->  -u B  <_  m
) )
1918anbi2d 703 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  ( ( B  <_  m  /\  -u m  <_  B )  <->  ( B  <_  m  /\  -u B  <_  m ) ) )
2016, 19syl5bb 257 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  ( ( -u m  <_  B  /\  B  <_  m )  <->  ( B  <_  m  /\  -u B  <_  m ) ) )
2115, 20bitrd 253 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  ( ( abs `  B )  <_  m 
<->  ( B  <_  m  /\  -u B  <_  m
) ) )
2221imbi2d 316 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  ( (
c  <_  x  ->  ( abs `  B )  <_  m )  <->  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m ) ) ) )
2322ralbidva 2900 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  ->  ( A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  m )  <->  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m )
) ) )
2423rexbidv 2973 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  m )  <->  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m
) ) ) )
2524biimpd 207 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  m )  ->  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m )
) ) )
26 breq2 4451 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  ( B  <_  n  <->  B  <_  m ) )
2726anbi1d 704 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
( B  <_  n  /\  -u B  <_  p
)  <->  ( B  <_  m  /\  -u B  <_  p
) ) )
2827imbi2d 316 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p
) )  <->  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  p ) ) ) )
2928rexralbidv 2981 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p )
)  <->  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  p )
) ) )
30 breq2 4451 . . . . . . . . . . . . . . . 16  |-  ( p  =  m  ->  ( -u B  <_  p  <->  -u B  <_  m ) )
3130anbi2d 703 . . . . . . . . . . . . . . 15  |-  ( p  =  m  ->  (
( B  <_  m  /\  -u B  <_  p
)  <->  ( B  <_  m  /\  -u B  <_  m
) ) )
3231imbi2d 316 . . . . . . . . . . . . . 14  |-  ( p  =  m  ->  (
( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  p
) )  <->  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m ) ) ) )
3332rexralbidv 2981 . . . . . . . . . . . . 13  |-  ( p  =  m  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  p )
)  <->  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m )
) ) )
3429, 33rspc2ev 3225 . . . . . . . . . . . 12  |-  ( ( m  e.  RR  /\  m  e.  RR  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m ) ) )  ->  E. n  e.  RR  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p ) ) )
35343anidm12 1285 . . . . . . . . . . 11  |-  ( ( m  e.  RR  /\  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( B  <_  m  /\  -u B  <_  m )
) )  ->  E. n  e.  RR  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p
) ) )
3611, 25, 35syl6an 545 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  C_  RR )  /\  m  e.  RR )  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  m )  ->  E. n  e.  RR  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p ) ) ) )
3736rexlimdva 2955 . . . . . . . . 9  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  m )  ->  E. n  e.  RR  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p ) ) ) )
38 simplrr 760 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  n  <_  p )  ->  p  e.  RR )
39 simplrl 759 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  -.  n  <_  p )  ->  n  e.  RR )
4038, 39ifclda 3971 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  C_  RR )  /\  (
n  e.  RR  /\  p  e.  RR )
)  ->  if (
n  <_  p ,  p ,  n )  e.  RR )
41 max2 11389 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  RR  /\  p  e.  RR )  ->  p  <_  if (
n  <_  p ,  p ,  n )
)
4241ad2antlr 726 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  p  <_  if ( n  <_  p ,  p ,  n ) )
4312adantlr 714 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  B  e.  RR )
4443renegcld 9987 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  -u B  e.  RR )
45 simplrr 760 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  p  e.  RR )
46 simplrl 759 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  n  e.  RR )
47 ifcl 3981 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  RR  /\  n  e.  RR )  ->  if ( n  <_  p ,  p ,  n )  e.  RR )
4845, 46, 47syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  if ( n  <_  p ,  p ,  n )  e.  RR )
49 letr 9679 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
-u B  e.  RR  /\  p  e.  RR  /\  if ( n  <_  p ,  p ,  n )  e.  RR )  -> 
( ( -u B  <_  p  /\  p  <_  if ( n  <_  p ,  p ,  n ) )  ->  -u B  <_  if ( n  <_  p ,  p ,  n ) ) )
5044, 45, 48, 49syl3anc 1228 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  (
( -u B  <_  p  /\  p  <_  if ( n  <_  p ,  p ,  n )
)  ->  -u B  <_  if ( n  <_  p ,  p ,  n ) ) )
5142, 50mpan2d 674 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  ( -u B  <_  p  ->  -u B  <_  if ( n  <_  p ,  p ,  n ) ) )
52 lenegcon1 10057 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  RR  /\  if ( n  <_  p ,  p ,  n )  e.  RR )  -> 
( -u B  <_  if ( n  <_  p ,  p ,  n )  <->  -u if ( n  <_  p ,  p ,  n )  <_  B
) )
5343, 48, 52syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  ( -u B  <_  if (
n  <_  p ,  p ,  n )  <->  -u if ( n  <_  p ,  p ,  n )  <_  B
) )
5451, 53sylibd 214 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  ( -u B  <_  p  ->  -u if ( n  <_  p ,  p ,  n )  <_  B ) )
55 max1 11387 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  RR  /\  p  e.  RR )  ->  n  <_  if (
n  <_  p ,  p ,  n )
)
5655ad2antlr 726 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  n  <_  if ( n  <_  p ,  p ,  n ) )
57 letr 9679 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  RR  /\  n  e.  RR  /\  if ( n  <_  p ,  p ,  n )  e.  RR )  -> 
( ( B  <_  n  /\  n  <_  if ( n  <_  p ,  p ,  n ) )  ->  B  <_  if ( n  <_  p ,  p ,  n ) ) )
5843, 46, 48, 57syl3anc 1228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  (
( B  <_  n  /\  n  <_  if ( n  <_  p ,  p ,  n )
)  ->  B  <_  if ( n  <_  p ,  p ,  n ) ) )
5956, 58mpan2d 674 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  ( B  <_  n  ->  B  <_  if ( n  <_  p ,  p ,  n ) ) )
6054, 59anim12d 563 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  (
( -u B  <_  p  /\  B  <_  n )  ->  ( -u if ( n  <_  p ,  p ,  n )  <_  B  /\  B  <_  if ( n  <_  p ,  p ,  n ) ) ) )
6160ancomsd 454 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  (
( B  <_  n  /\  -u B  <_  p
)  ->  ( -u if ( n  <_  p ,  p ,  n )  <_  B  /\  B  <_  if ( n  <_  p ,  p ,  n ) ) ) )
6243, 48absled 13228 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  (
( abs `  B
)  <_  if (
n  <_  p ,  p ,  n )  <->  (
-u if ( n  <_  p ,  p ,  n )  <_  B  /\  B  <_  if ( n  <_  p ,  p ,  n )
) ) )
6361, 62sylibrd 234 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  (
( B  <_  n  /\  -u B  <_  p
)  ->  ( abs `  B )  <_  if ( n  <_  p ,  p ,  n ) ) )
6463imim2d 52 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  C_  RR )  /\  ( n  e.  RR  /\  p  e.  RR ) )  /\  x  e.  A )  ->  (
( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p
) )  ->  (
c  <_  x  ->  ( abs `  B )  <_  if ( n  <_  p ,  p ,  n ) ) ) )
6564ralimdva 2872 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  C_  RR )  /\  (
n  e.  RR  /\  p  e.  RR )
)  ->  ( A. x  e.  A  (
c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p )
)  ->  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  if ( n  <_  p ,  p ,  n ) ) ) )
6665reximdv 2937 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  C_  RR )  /\  (
n  e.  RR  /\  p  e.  RR )
)  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p ) )  ->  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  if ( n  <_  p ,  p ,  n ) ) ) )
67 breq2 4451 . . . . . . . . . . . . . 14  |-  ( m  =  if ( n  <_  p ,  p ,  n )  ->  (
( abs `  B
)  <_  m  <->  ( abs `  B )  <_  if ( n  <_  p ,  p ,  n ) ) )
6867imbi2d 316 . . . . . . . . . . . . 13  |-  ( m  =  if ( n  <_  p ,  p ,  n )  ->  (
( c  <_  x  ->  ( abs `  B
)  <_  m )  <->  ( c  <_  x  ->  ( abs `  B )  <_  if ( n  <_  p ,  p ,  n ) ) ) )
6968rexralbidv 2981 . . . . . . . . . . . 12  |-  ( m  =  if ( n  <_  p ,  p ,  n )  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  m )  <->  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  if (
n  <_  p ,  p ,  n )
) ) )
7069rspcev 3214 . . . . . . . . . . 11  |-  ( ( if ( n  <_  p ,  p ,  n )  e.  RR  /\ 
E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  if ( n  <_  p ,  p ,  n ) ) )  ->  E. m  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  m ) )
7140, 66, 70syl6an 545 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  C_  RR )  /\  (
n  e.  RR  /\  p  e.  RR )
)  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p ) )  ->  E. m  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  m ) ) )
7271rexlimdvva 2962 . . . . . . . . 9  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. n  e.  RR  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p
) )  ->  E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  m )
) )
7337, 72impbid 191 . . . . . . . 8  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  m )  <->  E. n  e.  RR  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p
) ) ) )
74 rexanre 13145 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p )
)  <->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n
)  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) ) ) )
7574adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p
) )  <->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n )  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) ) ) )
76752rexbidv 2980 . . . . . . . 8  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. n  e.  RR  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  n  /\  -u B  <_  p
) )  <->  E. n  e.  RR  E. p  e.  RR  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n
)  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) ) ) )
7773, 76bitrd 253 . . . . . . 7  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  m )  <->  E. n  e.  RR  E. p  e.  RR  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n )  /\  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  -u B  <_  p ) ) ) )
78 reeanv 3029 . . . . . . 7  |-  ( E. n  e.  RR  E. p  e.  RR  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n )  /\  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  -u B  <_  p ) )  <-> 
( E. n  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n
)  /\  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) ) )
7977, 78syl6bb 261 . . . . . 6  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  m )  <->  ( E. n  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  n )  /\  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p ) ) ) )
80 rexcom 3023 . . . . . 6  |-  ( E. c  e.  RR  E. m  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  m
)  <->  E. m  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  m ) )
81 rexcom 3023 . . . . . . 7  |-  ( E. c  e.  RR  E. n  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n )  <->  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  n ) )
82 rexcom 3023 . . . . . . 7  |-  ( E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p )  <->  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) )
8381, 82anbi12i 697 . . . . . 6  |-  ( ( E. c  e.  RR  E. n  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  n )  /\  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p ) )  <->  ( E. n  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n
)  /\  E. p  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) ) )
8479, 80, 833bitr4g 288 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  ( E. c  e.  RR  E. m  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  m )  <->  ( E. c  e.  RR  E. n  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  n )  /\  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p ) ) ) )
85 simpr 461 . . . . . 6  |-  ( (
ph  /\  A  C_  RR )  ->  A  C_  RR )
8612recnd 9623 . . . . . 6  |-  ( ( ( ph  /\  A  C_  RR )  /\  x  e.  A )  ->  B  e.  CC )
8785, 86elo1mpt 13323 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <->  E. c  e.  RR  E. m  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  m ) ) )
8885, 12ello1mpt 13310 . . . . . 6  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  B )  e.  <_O(1)  <->  E. c  e.  RR  E. n  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  n ) ) )
8912renegcld 9987 . . . . . . 7  |-  ( ( ( ph  /\  A  C_  RR )  /\  x  e.  A )  ->  -u B  e.  RR )
9085, 89ello1mpt 13310 . . . . . 6  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  -u B
)  e.  <_O(1)  <->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) ) )
9188, 90anbi12d 710 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( ( x  e.  A  |->  B )  e.  <_O(1)  /\  ( x  e.  A  |-> 
-u B )  e. 
<_O(1) )  <->  ( E. c  e.  RR  E. n  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  n
)  /\  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  -u B  <_  p
) ) ) )
9284, 87, 913bitr4d 285 . . . 4  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <->  ( ( x  e.  A  |->  B )  e.  <_O(1)  /\  ( x  e.  A  |->  -u B
)  e.  <_O(1) ) ) )
9392ex 434 . . 3  |-  ( ph  ->  ( A  C_  RR  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <-> 
( ( x  e.  A  |->  B )  e. 
<_O(1)  /\  ( x  e.  A  |->  -u B )  e. 
<_O(1) ) ) ) )
9410, 93sylbid 215 . 2  |-  ( ph  ->  ( dom  ( x  e.  A  |->  B ) 
C_  RR  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <->  ( (
x  e.  A  |->  B )  e.  <_O(1)  /\  ( x  e.  A  |-> 
-u B )  e. 
<_O(1) ) ) ) )
952, 5, 94pm5.21ndd 354 1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <-> 
( ( x  e.  A  |->  B )  e. 
<_O(1)  /\  ( x  e.  A  |->  -u B )  e. 
<_O(1) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   ifcif 3939   class class class wbr 4447    |-> cmpt 4505   dom cdm 4999   ` cfv 5588   RRcr 9492    <_ cle 9630   -ucneg 9807   abscabs 13033   O(1)co1 13275   <_O(1)clo1 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-pre-sup 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-2nd 6786  df-recs 7043  df-rdg 7077  df-er 7312  df-pm 7424  df-en 7518  df-dom 7519  df-sdom 7520  df-sup 7902  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11084  df-rp 11222  df-ico 11536  df-seq 12077  df-exp 12136  df-cj 12898  df-re 12899  df-im 12900  df-sqrt 13034  df-abs 13035  df-o1 13279  df-lo1 13280
This theorem is referenced by:  o1lo12  13327  o1lo1d  13328  icco1  13329  lo1sub  13419
  Copyright terms: Public domain W3C validator