MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1co Structured version   Unicode version

Theorem o1co 13063
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1co.1  |-  ( ph  ->  F : A --> CC )
o1co.2  |-  ( ph  ->  F  e.  O(1) )
o1co.3  |-  ( ph  ->  G : B --> A )
o1co.4  |-  ( ph  ->  B  C_  RR )
o1co.5  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  ( G `  y ) ) )
Assertion
Ref Expression
o1co  |-  ( ph  ->  ( F  o.  G
)  e.  O(1) )
Distinct variable groups:    x, m, y, A    m, F, x, y    m, G, x, y    ph, m, x, y    B, m, x, y

Proof of Theorem o1co
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1co.2 . . . 4  |-  ( ph  ->  F  e.  O(1) )
2 o1co.1 . . . . 5  |-  ( ph  ->  F : A --> CC )
3 fdm 5562 . . . . . . 7  |-  ( F : A --> CC  ->  dom 
F  =  A )
42, 3syl 16 . . . . . 6  |-  ( ph  ->  dom  F  =  A )
5 o1dm 13007 . . . . . . 7  |-  ( F  e.  O(1)  ->  dom  F  C_  RR )
61, 5syl 16 . . . . . 6  |-  ( ph  ->  dom  F  C_  RR )
74, 6eqsstr3d 3390 . . . . 5  |-  ( ph  ->  A  C_  RR )
8 elo12 13004 . . . . 5  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( F  e.  O(1)  <->  E. m  e.  RR  E. n  e.  RR  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
) ) )
92, 7, 8syl2anc 661 . . . 4  |-  ( ph  ->  ( F  e.  O(1)  <->  E. m  e.  RR  E. n  e.  RR  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
) ) )
101, 9mpbid 210 . . 3  |-  ( ph  ->  E. m  e.  RR  E. n  e.  RR  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )
11 o1co.5 . . . . 5  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  ( G `  y ) ) )
12 reeanv 2887 . . . . . 6  |-  ( E. x  e.  RR  E. n  e.  RR  ( A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) )  /\  A. z  e.  A  ( m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  <-> 
( E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  ( G `  y ) )  /\  E. n  e.  RR  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
) ) )
13 o1co.3 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G : B --> A )
1413ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  ->  G : B --> A )
1514ffvelrnda 5842 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  y  e.  B
)  ->  ( G `  y )  e.  A
)
16 breq2 4295 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  y )  ->  (
m  <_  z  <->  m  <_  ( G `  y ) ) )
17 fveq2 5690 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( G `  y )  ->  ( F `  z )  =  ( F `  ( G `  y ) ) )
1817fveq2d 5694 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( G `  y )  ->  ( abs `  ( F `  z ) )  =  ( abs `  ( F `  ( G `  y ) ) ) )
1918breq1d 4301 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  y )  ->  (
( abs `  ( F `  z )
)  <_  n  <->  ( abs `  ( F `  ( G `  y )
) )  <_  n
) )
2016, 19imbi12d 320 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( G `  y )  ->  (
( m  <_  z  ->  ( abs `  ( F `  z )
)  <_  n )  <->  ( m  <_  ( G `  y )  ->  ( abs `  ( F `  ( G `  y ) ) )  <_  n
) ) )
2120rspcva 3070 . . . . . . . . . . . . . . 15  |-  ( ( ( G `  y
)  e.  A  /\  A. z  e.  A  ( m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  ( m  <_ 
( G `  y
)  ->  ( abs `  ( F `  ( G `  y )
) )  <_  n
) )
2215, 21sylan 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  y  e.  B )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  ( m  <_ 
( G `  y
)  ->  ( abs `  ( F `  ( G `  y )
) )  <_  n
) )
2322an32s 802 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( m  <_  ( G `  y
)  ->  ( abs `  ( F `  ( G `  y )
) )  <_  n
) )
2414adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
) )  ->  G : B --> A )
25 fvco3 5767 . . . . . . . . . . . . . . . 16  |-  ( ( G : B --> A  /\  y  e.  B )  ->  ( ( F  o.  G ) `  y
)  =  ( F `
 ( G `  y ) ) )
2624, 25sylan 471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( ( F  o.  G ) `  y )  =  ( F `  ( G `
 y ) ) )
2726fveq2d 5694 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( abs `  ( ( F  o.  G ) `  y
) )  =  ( abs `  ( F `
 ( G `  y ) ) ) )
2827breq1d 4301 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( ( abs `  ( ( F  o.  G ) `  y ) )  <_  n 
<->  ( abs `  ( F `  ( G `  y ) ) )  <_  n ) )
2923, 28sylibrd 234 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( m  <_  ( G `  y
)  ->  ( abs `  ( ( F  o.  G ) `  y
) )  <_  n
) )
3029imim2d 52 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( (
x  <_  y  ->  m  <_  ( G `  y ) )  -> 
( x  <_  y  ->  ( abs `  (
( F  o.  G
) `  y )
)  <_  n )
) )
3130ralimdva 2793 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
) )  ->  ( A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) )  ->  A. y  e.  B  ( x  <_  y  -> 
( abs `  (
( F  o.  G
) `  y )
)  <_  n )
) )
3231expimpd 603 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  ->  ( ( A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n )  /\  A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) ) )  ->  A. y  e.  B  ( x  <_  y  -> 
( abs `  (
( F  o.  G
) `  y )
)  <_  n )
) )
3332ancomsd 454 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  ->  ( ( A. y  e.  B  (
x  <_  y  ->  m  <_  ( G `  y ) )  /\  A. z  e.  A  ( m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  A. y  e.  B  ( x  <_  y  -> 
( abs `  (
( F  o.  G
) `  y )
)  <_  n )
) )
3433reximdva 2827 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  ->  ( E. n  e.  RR  ( A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) )  /\  A. z  e.  A  ( m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  E. n  e.  RR  A. y  e.  B  ( x  <_  y  ->  ( abs `  ( ( F  o.  G ) `
 y ) )  <_  n ) ) )
3534reximdva 2827 . . . . . 6  |-  ( (
ph  /\  m  e.  RR )  ->  ( E. x  e.  RR  E. n  e.  RR  ( A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) )  /\  A. z  e.  A  ( m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  (
x  <_  y  ->  ( abs `  ( ( F  o.  G ) `
 y ) )  <_  n ) ) )
3612, 35syl5bir 218 . . . . 5  |-  ( (
ph  /\  m  e.  RR )  ->  ( ( E. x  e.  RR  A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) )  /\  E. n  e.  RR  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  (
x  <_  y  ->  ( abs `  ( ( F  o.  G ) `
 y ) )  <_  n ) ) )
3711, 36mpand 675 . . . 4  |-  ( (
ph  /\  m  e.  RR )  ->  ( E. n  e.  RR  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n )  ->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  (
x  <_  y  ->  ( abs `  ( ( F  o.  G ) `
 y ) )  <_  n ) ) )
3837rexlimdva 2840 . . 3  |-  ( ph  ->  ( E. m  e.  RR  E. n  e.  RR  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
)  ->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  ( abs `  ( ( F  o.  G ) `  y
) )  <_  n
) ) )
3910, 38mpd 15 . 2  |-  ( ph  ->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  (
x  <_  y  ->  ( abs `  ( ( F  o.  G ) `
 y ) )  <_  n ) )
40 fco 5567 . . . 4  |-  ( ( F : A --> CC  /\  G : B --> A )  ->  ( F  o.  G ) : B --> CC )
412, 13, 40syl2anc 661 . . 3  |-  ( ph  ->  ( F  o.  G
) : B --> CC )
42 o1co.4 . . 3  |-  ( ph  ->  B  C_  RR )
43 elo12 13004 . . 3  |-  ( ( ( F  o.  G
) : B --> CC  /\  B  C_  RR )  -> 
( ( F  o.  G )  e.  O(1)  <->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  ( abs `  ( ( F  o.  G ) `  y
) )  <_  n
) ) )
4441, 42, 43syl2anc 661 . 2  |-  ( ph  ->  ( ( F  o.  G )  e.  O(1)  <->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  ( abs `  ( ( F  o.  G ) `  y
) )  <_  n
) ) )
4539, 44mpbird 232 1  |-  ( ph  ->  ( F  o.  G
)  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2714   E.wrex 2715    C_ wss 3327   class class class wbr 4291   dom cdm 4839    o. ccom 4843   -->wf 5413   ` cfv 5417   CCcc 9279   RRcr 9280    <_ cle 9418   abscabs 12722   O(1)co1 12963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-pre-lttri 9355  ax-pre-lttrn 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-po 4640  df-so 4641  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-er 7100  df-pm 7216  df-en 7310  df-dom 7311  df-sdom 7312  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-ico 11305  df-o1 12967
This theorem is referenced by:  o1compt  13064
  Copyright terms: Public domain W3C validator