MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1add2 Structured version   Unicode version

Theorem o1add2 13654
Description: The sum of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
o1add2.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
o1add2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  O(1) )
o1add2.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  O(1) )
Assertion
Ref Expression
o1add2  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  O(1) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem o1add2
StepHypRef Expression
1 o1add2.1 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
21ralrimiva 2837 . . . . . 6  |-  ( ph  ->  A. x  e.  A  B  e.  V )
3 dmmptg 5343 . . . . . 6  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
42, 3syl 17 . . . . 5  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
5 o1add2.3 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  O(1) )
6 o1dm 13561 . . . . . 6  |-  ( ( x  e.  A  |->  B )  e.  O(1)  ->  dom  ( x  e.  A  |->  B )  C_  RR )
75, 6syl 17 . . . . 5  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  C_  RR )
84, 7eqsstr3d 3496 . . . 4  |-  ( ph  ->  A  C_  RR )
9 reex 9619 . . . . 5  |-  RR  e.  _V
109ssex 4560 . . . 4  |-  ( A 
C_  RR  ->  A  e. 
_V )
118, 10syl 17 . . 3  |-  ( ph  ->  A  e.  _V )
12 o1add2.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
13 eqidd 2421 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
14 eqidd 2421 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C ) )
1511, 1, 12, 13, 14offval2 6553 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  oF  +  ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( B  +  C ) ) )
16 o1add2.4 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  O(1) )
17 o1add 13644 . . 3  |-  ( ( ( x  e.  A  |->  B )  e.  O(1)  /\  ( x  e.  A  |->  C )  e.  O(1) )  ->  ( ( x  e.  A  |->  B )  oF  +  ( x  e.  A  |->  C ) )  e.  O(1) )
185, 16, 17syl2anc 665 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  oF  +  ( x  e.  A  |->  C ) )  e.  O(1) )
1915, 18eqeltrrd 2509 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1867   A.wral 2773   _Vcvv 3078    C_ wss 3433    |-> cmpt 4475   dom cdm 4845  (class class class)co 6296    oFcof 6534   RRcr 9527    + caddc 9531   O(1)co1 13517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-pre-sup 9606
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6536  df-om 6698  df-2nd 6799  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-er 7362  df-pm 7474  df-en 7569  df-dom 7570  df-sdom 7571  df-sup 7953  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-div 10259  df-nn 10599  df-2 10657  df-3 10658  df-n0 10859  df-z 10927  df-uz 11149  df-rp 11292  df-ico 11630  df-seq 12200  df-exp 12259  df-cj 13130  df-re 13131  df-im 13132  df-sqrt 13266  df-abs 13267  df-o1 13521
This theorem is referenced by:  dchrvmasumlem2  24196  dchrisum0lem1  24214  dchrisum0lem3  24217  mulog2sumlem2  24233  selberglem1  24243  selberg3  24257  selberg4  24259  selberg4r  24268  selberg34r  24269  pntrlog2bndlem2  24276
  Copyright terms: Public domain W3C validator