MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nzrnz Structured version   Unicode version

Theorem nzrnz 17450
Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
isnzr.o  |-  .1.  =  ( 1r `  R )
isnzr.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
nzrnz  |-  ( R  e. NzRing  ->  .1.  =/=  .0.  )

Proof of Theorem nzrnz
StepHypRef Expression
1 isnzr.o . . 3  |-  .1.  =  ( 1r `  R )
2 isnzr.z . . 3  |-  .0.  =  ( 0g `  R )
31, 2isnzr 17449 . 2  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  .1.  =/=  .0.  )
)
43simprbi 464 1  |-  ( R  e. NzRing  ->  .1.  =/=  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758    =/= wne 2644   ` cfv 5518   0gc0g 14482   1rcur 16710   Ringcrg 16753  NzRingcnzr 17447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-rex 2801  df-rab 2804  df-v 3072  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-br 4393  df-iota 5481  df-fv 5526  df-nzr 17448
This theorem is referenced by:  nzrunit  17456  subrgnzr  17457  fidomndrng  17487  uvcf1  18328  lindfind2  18358  nm1  20366  deg1pw  21710  ply1nz  21711  ply1nzb  21712  lgsqrlem4  22801  zrhnm  26534  mon1pid  29713  deg1mhm  29715
  Copyright terms: Public domain W3C validator