MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvz Structured version   Unicode version

Theorem nvz 25999
Description: The norm of a vector is zero iff the vector is zero. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvz.1  |-  X  =  ( BaseSet `  U )
nvz.5  |-  Z  =  ( 0vec `  U
)
nvz.6  |-  N  =  ( normCV `  U )
Assertion
Ref Expression
nvz  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( N `  A
)  =  0  <->  A  =  Z ) )

Proof of Theorem nvz
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvz.1 . . . . . 6  |-  X  =  ( BaseSet `  U )
2 eqid 2404 . . . . . 6  |-  ( +v
`  U )  =  ( +v `  U
)
3 eqid 2404 . . . . . 6  |-  ( .sOLD `  U )  =  ( .sOLD `  U )
4 nvz.5 . . . . . 6  |-  Z  =  ( 0vec `  U
)
5 nvz.6 . . . . . 6  |-  N  =  ( normCV `  U )
61, 2, 3, 4, 5nvi 25934 . . . . 5  |-  ( U  e.  NrmCVec  ->  ( <. ( +v `  U ) ,  ( .sOLD `  U ) >.  e.  CVecOLD 
/\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y
( .sOLD `  U ) x ) )  =  ( ( abs `  y )  x.  ( N `  x ) )  /\  A. y  e.  X  ( N `  ( x ( +v `  U
) y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) ) ) )
76simp3d 1013 . . . 4  |-  ( U  e.  NrmCVec  ->  A. x  e.  X  ( ( ( N `
 x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y
( .sOLD `  U ) x ) )  =  ( ( abs `  y )  x.  ( N `  x ) )  /\  A. y  e.  X  ( N `  ( x ( +v `  U
) y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) ) )
8 simp1 999 . . . . 5  |-  ( ( ( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y ( .sOLD `  U ) x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x ( +v
`  U ) y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) )  ->  ( ( N `  x )  =  0  ->  x  =  Z ) )
98ralimi 2799 . . . 4  |-  ( A. x  e.  X  (
( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y ( .sOLD `  U ) x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x ( +v
`  U ) y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) )  ->  A. x  e.  X  ( ( N `  x )  =  0  ->  x  =  Z ) )
10 fveq2 5851 . . . . . . 7  |-  ( x  =  A  ->  ( N `  x )  =  ( N `  A ) )
1110eqeq1d 2406 . . . . . 6  |-  ( x  =  A  ->  (
( N `  x
)  =  0  <->  ( N `  A )  =  0 ) )
12 eqeq1 2408 . . . . . 6  |-  ( x  =  A  ->  (
x  =  Z  <->  A  =  Z ) )
1311, 12imbi12d 320 . . . . 5  |-  ( x  =  A  ->  (
( ( N `  x )  =  0  ->  x  =  Z )  <->  ( ( N `
 A )  =  0  ->  A  =  Z ) ) )
1413rspccv 3159 . . . 4  |-  ( A. x  e.  X  (
( N `  x
)  =  0  ->  x  =  Z )  ->  ( A  e.  X  ->  ( ( N `  A )  =  0  ->  A  =  Z ) ) )
157, 9, 143syl 18 . . 3  |-  ( U  e.  NrmCVec  ->  ( A  e.  X  ->  ( ( N `  A )  =  0  ->  A  =  Z ) ) )
1615imp 429 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( N `  A
)  =  0  ->  A  =  Z )
)
17 fveq2 5851 . . . . 5  |-  ( A  =  Z  ->  ( N `  A )  =  ( N `  Z ) )
184, 5nvz0 25998 . . . . 5  |-  ( U  e.  NrmCVec  ->  ( N `  Z )  =  0 )
1917, 18sylan9eqr 2467 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  =  Z )  ->  ( N `  A )  =  0 )
2019ex 434 . . 3  |-  ( U  e.  NrmCVec  ->  ( A  =  Z  ->  ( N `  A )  =  0 ) )
2120adantr 465 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A  =  Z  ->  ( N `  A )  =  0 ) )
2216, 21impbid 192 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( N `  A
)  =  0  <->  A  =  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 186    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844   A.wral 2756   <.cop 3980   class class class wbr 4397   -->wf 5567   ` cfv 5571  (class class class)co 6280   CCcc 9522   RRcr 9523   0cc0 9524    + caddc 9527    x. cmul 9529    <_ cle 9661   abscabs 13218   CVecOLDcvc 25865   NrmCVeccnv 25904   +vcpv 25905   BaseSetcba 25906   .sOLDcns 25907   0veccn0v 25908   normCVcnmcv 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601  ax-pre-sup 9602
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-er 7350  df-en 7557  df-dom 7558  df-sdom 7559  df-sup 7937  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-nn 10579  df-2 10637  df-3 10638  df-n0 10839  df-z 10908  df-uz 11130  df-rp 11268  df-seq 12154  df-exp 12213  df-cj 13083  df-re 13084  df-im 13085  df-sqrt 13219  df-abs 13220  df-grpo 25620  df-gid 25621  df-ginv 25622  df-ablo 25711  df-vc 25866  df-nv 25912  df-va 25915  df-ba 25916  df-sm 25917  df-0v 25918  df-nmcv 25920
This theorem is referenced by:  nvgt0  26005  nv1  26006  imsmetlem  26023  ipz  26059  nmlno0lem  26135  nmblolbii  26141  blocnilem  26146  siii  26195  hlipgt0  26257
  Copyright terms: Public domain W3C validator