MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvsid Structured version   Unicode version

Theorem nvsid 24128
Description: Identity element for the scalar product of a normed complex vector space. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1  |-  X  =  ( BaseSet `  U )
nvscl.4  |-  S  =  ( .sOLD `  U )
Assertion
Ref Expression
nvsid  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
1 S A )  =  A )

Proof of Theorem nvsid
StepHypRef Expression
1 eqid 2450 . . 3  |-  ( 1st `  U )  =  ( 1st `  U )
21nvvc 24114 . 2  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  e.  CVecOLD )
3 eqid 2450 . . . 4  |-  ( +v
`  U )  =  ( +v `  U
)
43vafval 24102 . . 3  |-  ( +v
`  U )  =  ( 1st `  ( 1st `  U ) )
5 nvscl.4 . . . 4  |-  S  =  ( .sOLD `  U )
65smfval 24104 . . 3  |-  S  =  ( 2nd `  ( 1st `  U ) )
7 nvscl.1 . . . 4  |-  X  =  ( BaseSet `  U )
87, 3bafval 24103 . . 3  |-  X  =  ran  ( +v `  U )
94, 6, 8vcid 24050 . 2  |-  ( ( ( 1st `  U
)  e.  CVecOLD  /\  A  e.  X )  ->  ( 1 S A )  =  A )
102, 9sylan 471 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
1 S A )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1757   ` cfv 5502  (class class class)co 6176   1stc1st 6661   1c1 9370   CVecOLDcvc 24044   NrmCVeccnv 24083   +vcpv 24084   BaseSetcba 24085   .sOLDcns 24086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-rep 4487  ax-sep 4497  ax-nul 4505  ax-pow 4554  ax-pr 4615  ax-un 6458
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-ral 2797  df-rex 2798  df-reu 2799  df-rab 2801  df-v 3056  df-sbc 3271  df-csb 3373  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-nul 3722  df-if 3876  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4176  df-iun 4257  df-br 4377  df-opab 4435  df-mpt 4436  df-id 4720  df-xp 4930  df-rel 4931  df-cnv 4932  df-co 4933  df-dm 4934  df-rn 4935  df-res 4936  df-ima 4937  df-iota 5465  df-fun 5504  df-fn 5505  df-f 5506  df-f1 5507  df-fo 5508  df-f1o 5509  df-fv 5510  df-ov 6179  df-oprab 6180  df-1st 6663  df-2nd 6664  df-vc 24045  df-nv 24091  df-va 24094  df-ba 24095  df-sm 24096  df-0v 24097  df-nmcv 24099
This theorem is referenced by:  nvmul0or  24153  nvnncan  24164  nvpi  24175  nvge0  24183  ipval2lem3  24221  ipval2  24223  ipval2lem6  24227  ipidsq  24229  lnoadd  24279  ip1ilem  24347  ip2i  24349  ipdirilem  24350  ipasslem1  24352  ipasslem4  24355  ipasslem10  24360  minvecolem2  24397  hlmulid  24427
  Copyright terms: Public domain W3C validator