MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvsf Structured version   Unicode version

Theorem nvsf 26080
Description: Mapping for the scalar multiplication operation. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvsf.1  |-  X  =  ( BaseSet `  U )
nvsf.4  |-  S  =  ( .sOLD `  U )
Assertion
Ref Expression
nvsf  |-  ( U  e.  NrmCVec  ->  S : ( CC  X.  X ) --> X )

Proof of Theorem nvsf
StepHypRef Expression
1 eqid 2420 . . 3  |-  ( 1st `  U )  =  ( 1st `  U )
21nvvc 26076 . 2  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  e.  CVecOLD )
3 eqid 2420 . . . 4  |-  ( +v
`  U )  =  ( +v `  U
)
43vafval 26064 . . 3  |-  ( +v
`  U )  =  ( 1st `  ( 1st `  U ) )
5 nvsf.4 . . . 4  |-  S  =  ( .sOLD `  U )
65smfval 26066 . . 3  |-  S  =  ( 2nd `  ( 1st `  U ) )
7 nvsf.1 . . . 4  |-  X  =  ( BaseSet `  U )
87, 3bafval 26065 . . 3  |-  X  =  ran  ( +v `  U )
94, 6, 8vcsm 26010 . 2  |-  ( ( 1st `  U )  e.  CVecOLD  ->  S : ( CC  X.  X ) --> X )
102, 9syl 17 1  |-  ( U  e.  NrmCVec  ->  S : ( CC  X.  X ) --> X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437    e. wcel 1867    X. cxp 4843   -->wf 5588   ` cfv 5592   1stc1st 6796   CCcc 9526   CVecOLDcvc 26006   NrmCVeccnv 26045   +vcpv 26046   BaseSetcba 26047   .sOLDcns 26048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-ov 6299  df-oprab 6300  df-1st 6798  df-2nd 6799  df-vc 26007  df-nv 26053  df-va 26056  df-ba 26057  df-sm 26058  df-0v 26059  df-nmcv 26061
This theorem is referenced by:  nvinvfval  26103  smcnlem  26175  ssps  26211  hlmulf  26388
  Copyright terms: Public domain W3C validator