MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvnnncan2 Structured version   Unicode version

Theorem nvnnncan2 25220
Description: Cancellation law for vector subtraction. (nnncan2 9852 analog.) (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmf.1  |-  X  =  ( BaseSet `  U )
nvmf.3  |-  M  =  ( -v `  U
)
Assertion
Ref Expression
nvnnncan2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A M C ) M ( B M C ) )  =  ( A M B ) )

Proof of Theorem nvnnncan2
StepHypRef Expression
1 eqid 2467 . . 3  |-  ( +v
`  U )  =  ( +v `  U
)
21nvgrp 25186 . 2  |-  ( U  e.  NrmCVec  ->  ( +v `  U )  e.  GrpOp )
3 nvmf.1 . . . 4  |-  X  =  ( BaseSet `  U )
43, 1bafval 25173 . . 3  |-  X  =  ran  ( +v `  U )
5 nvmf.3 . . . 4  |-  M  =  ( -v `  U
)
61, 5vsfval 25204 . . 3  |-  M  =  (  /g  `  ( +v `  U ) )
74, 6grponnncan2 24932 . 2  |-  ( ( ( +v `  U
)  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A M C ) M ( B M C ) )  =  ( A M B ) )
82, 7sylan 471 1  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A M C ) M ( B M C ) )  =  ( A M B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   ` cfv 5586  (class class class)co 6282   GrpOpcgr 24864   NrmCVeccnv 25153   +vcpv 25154   BaseSetcba 25155   -vcnsb 25158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-grpo 24869  df-gid 24870  df-ginv 24871  df-gdiv 24872  df-ablo 24960  df-vc 25115  df-nv 25161  df-va 25164  df-ba 25165  df-sm 25166  df-0v 25167  df-vs 25168  df-nmcv 25169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator