MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvnnncan2 Structured version   Unicode version

Theorem nvnnncan2 24176
Description: Cancellation law for vector subtraction. (nnncan2 9752 analog.) (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmf.1  |-  X  =  ( BaseSet `  U )
nvmf.3  |-  M  =  ( -v `  U
)
Assertion
Ref Expression
nvnnncan2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A M C ) M ( B M C ) )  =  ( A M B ) )

Proof of Theorem nvnnncan2
StepHypRef Expression
1 eqid 2452 . . 3  |-  ( +v
`  U )  =  ( +v `  U
)
21nvgrp 24142 . 2  |-  ( U  e.  NrmCVec  ->  ( +v `  U )  e.  GrpOp )
3 nvmf.1 . . . 4  |-  X  =  ( BaseSet `  U )
43, 1bafval 24129 . . 3  |-  X  =  ran  ( +v `  U )
5 nvmf.3 . . . 4  |-  M  =  ( -v `  U
)
61, 5vsfval 24160 . . 3  |-  M  =  (  /g  `  ( +v `  U ) )
74, 6grponnncan2 23888 . 2  |-  ( ( ( +v `  U
)  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A M C ) M ( B M C ) )  =  ( A M B ) )
82, 7sylan 471 1  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A M C ) M ( B M C ) )  =  ( A M B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   ` cfv 5521  (class class class)co 6195   GrpOpcgr 23820   NrmCVeccnv 24109   +vcpv 24110   BaseSetcba 24111   -vcnsb 24114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-1st 6682  df-2nd 6683  df-grpo 23825  df-gid 23826  df-ginv 23827  df-gdiv 23828  df-ablo 23916  df-vc 24071  df-nv 24117  df-va 24120  df-ba 24121  df-sm 24122  df-0v 24123  df-vs 24124  df-nmcv 24125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator