MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvi Structured version   Unicode version

Theorem nvi 25211
Description: The properties of a normed complex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvi.1  |-  X  =  ( BaseSet `  U )
nvi.2  |-  G  =  ( +v `  U
)
nvi.4  |-  S  =  ( .sOLD `  U )
nvi.5  |-  Z  =  ( 0vec `  U
)
nvi.6  |-  N  =  ( normCV `  U )
Assertion
Ref Expression
nvi  |-  ( U  e.  NrmCVec  ->  ( <. G ,  S >.  e.  CVecOLD  /\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) )
Distinct variable groups:    x, y, G    x, N, y    x, U    x, S, y    x, X, y
Allowed substitution hints:    U( y)    Z( x, y)

Proof of Theorem nvi
StepHypRef Expression
1 eqid 2467 . . . . . 6  |-  ( 1st `  U )  =  ( 1st `  U )
2 nvi.6 . . . . . 6  |-  N  =  ( normCV `  U )
31, 2nvop2 25205 . . . . 5  |-  ( U  e.  NrmCVec  ->  U  =  <. ( 1st `  U ) ,  N >. )
4 nvi.2 . . . . . . 7  |-  G  =  ( +v `  U
)
5 nvi.4 . . . . . . 7  |-  S  =  ( .sOLD `  U )
61, 4, 5nvvop 25206 . . . . . 6  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  =  <. G ,  S >. )
76opeq1d 4219 . . . . 5  |-  ( U  e.  NrmCVec  ->  <. ( 1st `  U
) ,  N >.  = 
<. <. G ,  S >. ,  N >. )
83, 7eqtrd 2508 . . . 4  |-  ( U  e.  NrmCVec  ->  U  =  <. <. G ,  S >. ,  N >. )
9 id 22 . . . 4  |-  ( U  e.  NrmCVec  ->  U  e.  NrmCVec )
108, 9eqeltrrd 2556 . . 3  |-  ( U  e.  NrmCVec  ->  <. <. G ,  S >. ,  N >.  e.  NrmCVec )
11 nvi.1 . . . . 5  |-  X  =  ( BaseSet `  U )
1211, 4bafval 25201 . . . 4  |-  X  =  ran  G
13 eqid 2467 . . . 4  |-  (GId `  G )  =  (GId
`  G )
1412, 13isnv 25209 . . 3  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  <->  ( <. G ,  S >.  e.  CVecOLD 
/\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  (GId `  G )
)  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) )
1510, 14sylib 196 . 2  |-  ( U  e.  NrmCVec  ->  ( <. G ,  S >.  e.  CVecOLD  /\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  (GId
`  G ) )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) )
16 nvi.5 . . . . . . . 8  |-  Z  =  ( 0vec `  U
)
174, 160vfval 25203 . . . . . . 7  |-  ( U  e.  NrmCVec  ->  Z  =  (GId
`  G ) )
1817eqeq2d 2481 . . . . . 6  |-  ( U  e.  NrmCVec  ->  ( x  =  Z  <->  x  =  (GId `  G ) ) )
1918imbi2d 316 . . . . 5  |-  ( U  e.  NrmCVec  ->  ( ( ( N `  x )  =  0  ->  x  =  Z )  <->  ( ( N `  x )  =  0  ->  x  =  (GId `  G )
) ) )
20193anbi1d 1303 . . . 4  |-  ( U  e.  NrmCVec  ->  ( ( ( ( N `  x
)  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) )  <->  ( ( ( N `  x )  =  0  ->  x  =  (GId `  G )
)  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) )
2120ralbidv 2903 . . 3  |-  ( U  e.  NrmCVec  ->  ( A. x  e.  X  ( (
( N `  x
)  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) )  <->  A. x  e.  X  ( ( ( N `
 x )  =  0  ->  x  =  (GId `  G ) )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) )
22213anbi3d 1305 . 2  |-  ( U  e.  NrmCVec  ->  ( ( <. G ,  S >.  e. 
CVecOLD  /\  N : X
--> RR  /\  A. x  e.  X  ( (
( N `  x
)  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) )  <->  ( <. G ,  S >.  e.  CVecOLD 
/\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  (GId `  G )
)  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) ) )
2315, 22mpbird 232 1  |-  ( U  e.  NrmCVec  ->  ( <. G ,  S >.  e.  CVecOLD  /\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   <.cop 4033   class class class wbr 4447   -->wf 5584   ` cfv 5588  (class class class)co 6284   1stc1st 6782   CCcc 9490   RRcr 9491   0cc0 9492    + caddc 9495    x. cmul 9497    <_ cle 9629   abscabs 13030  GIdcgi 24893   CVecOLDcvc 25142   NrmCVeccnv 25181   +vcpv 25182   BaseSetcba 25183   .sOLDcns 25184   0veccn0v 25185   normCVcnmcv 25187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-1st 6784  df-2nd 6785  df-vc 25143  df-nv 25189  df-va 25192  df-ba 25193  df-sm 25194  df-0v 25195  df-nmcv 25197
This theorem is referenced by:  nvvc  25212  nvf  25265  nvs  25269  nvz  25276  nvtri  25277
  Copyright terms: Public domain W3C validator