MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvgrp Structured version   Unicode version

Theorem nvgrp 23995
Description: The vector addition operation of a normed complex vector space is a group. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
nvabl.1  |-  G  =  ( +v `  U
)
Assertion
Ref Expression
nvgrp  |-  ( U  e.  NrmCVec  ->  G  e.  GrpOp )

Proof of Theorem nvgrp
StepHypRef Expression
1 nvabl.1 . . 3  |-  G  =  ( +v `  U
)
21nvablo 23994 . 2  |-  ( U  e.  NrmCVec  ->  G  e.  AbelOp )
3 ablogrpo 23771 . 2  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
42, 3syl 16 1  |-  ( U  e.  NrmCVec  ->  G  e.  GrpOp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   ` cfv 5418   GrpOpcgr 23673   AbelOpcablo 23768   NrmCVeccnv 23962   +vcpv 23963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-1st 6577  df-2nd 6578  df-ablo 23769  df-vc 23924  df-nv 23970  df-va 23973  df-ba 23974  df-sm 23975  df-0v 23976  df-nmcv 23978
This theorem is referenced by:  nvgf  23996  nvgcl  23998  nvass  24000  nvrcan  24003  nvlcan  24004  nvzcl  24014  nv0rid  24015  nv0lid  24016  nvinvfval  24020  nvmval  24022  nvmfval  24024  nvnnncan2  24029  nvnegneg  24031  nvrinv  24033  nvlinv  24034  nvaddsubass  24038  nvmtri2  24060  hhshsslem1  24668
  Copyright terms: Public domain W3C validator