MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvex Structured version   Unicode version

Theorem nvex 23989
Description: The components of a normed complex vector space are sets. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.)
Assertion
Ref Expression
nvex  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  ->  ( G  e.  _V  /\  S  e.  _V  /\  N  e. 
_V ) )

Proof of Theorem nvex
StepHypRef Expression
1 nvvcop 23972 . . 3  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  ->  <. G ,  S >.  e.  CVecOLD )
2 vcex 23958 . . 3  |-  ( <. G ,  S >.  e. 
CVecOLD  ->  ( G  e.  _V  /\  S  e. 
_V ) )
31, 2syl 16 . 2  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  ->  ( G  e.  _V  /\  S  e.  _V ) )
4 nvss 23971 . . . 4  |-  NrmCVec  C_  ( CVecOLD  X.  _V )
54sseli 3352 . . 3  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  ->  <. <. G ,  S >. ,  N >.  e.  ( CVecOLD  X.  _V ) )
6 opelxp2 4873 . . 3  |-  ( <. <. G ,  S >. ,  N >.  e.  ( CVecOLD  X.  _V )  ->  N  e.  _V )
75, 6syl 16 . 2  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  ->  N  e.  _V )
8 df-3an 967 . 2  |-  ( ( G  e.  _V  /\  S  e.  _V  /\  N  e.  _V )  <->  ( ( G  e.  _V  /\  S  e.  _V )  /\  N  e.  _V ) )
93, 7, 8sylanbrc 664 1  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  ->  ( G  e.  _V  /\  S  e.  _V  /\  N  e. 
_V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    e. wcel 1756   _Vcvv 2972   <.cop 3883    X. cxp 4838   CVecOLDcvc 23923   NrmCVeccnv 23962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-br 4293  df-opab 4351  df-xp 4846  df-rel 4847  df-oprab 6095  df-vc 23924  df-nv 23970
This theorem is referenced by:  isnv  23990  h2hva  24376  h2hsm  24377  h2hnm  24378
  Copyright terms: Public domain W3C validator