Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nvelim Unicode version

Theorem nvelim 27646
Description: If a class is the universal class it doesn't belong to any class, generalisation of nvel 4283. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
nvelim  |-  ( A  =  _V  ->  -.  A  e.  B )

Proof of Theorem nvelim
StepHypRef Expression
1 nvel 4283 . 2  |-  -.  _V  e.  B
2 eleq1 2447 . . 3  |-  ( _V  =  A  ->  ( _V  e.  B  <->  A  e.  B ) )
32eqcoms 2390 . 2  |-  ( A  =  _V  ->  ( _V  e.  B  <->  A  e.  B ) )
41, 3mtbii 294 1  |-  ( A  =  _V  ->  -.  A  e.  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1717   _Vcvv 2899
This theorem is referenced by:  afvvdm  27674  afvvfunressn  27676  afvvv  27678  afvvfveq  27681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-v 2901
  Copyright terms: Public domain W3C validator