MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvadd12 Structured version   Unicode version

Theorem nvadd12 24013
Description: Commutative/associative law for vector addition. (Contributed by NM, 14-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvgcl.1  |-  X  =  ( BaseSet `  U )
nvgcl.2  |-  G  =  ( +v `  U
)
Assertion
Ref Expression
nvadd12  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A G ( B G C ) )  =  ( B G ( A G C ) ) )

Proof of Theorem nvadd12
StepHypRef Expression
1 nvgcl.1 . . . . 5  |-  X  =  ( BaseSet `  U )
2 nvgcl.2 . . . . 5  |-  G  =  ( +v `  U
)
31, 2nvcom 24011 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  =  ( B G A ) )
433adant3r3 1198 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A G B )  =  ( B G A ) )
54oveq1d 6118 . 2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G B ) G C )  =  ( ( B G A ) G C ) )
61, 2nvass 24012 . 2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G B ) G C )  =  ( A G ( B G C ) ) )
7 3ancoma 972 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  <->  ( B  e.  X  /\  A  e.  X  /\  C  e.  X )
)
81, 2nvass 24012 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( B  e.  X  /\  A  e.  X  /\  C  e.  X )
)  ->  ( ( B G A ) G C )  =  ( B G ( A G C ) ) )
97, 8sylan2b 475 . 2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( B G A ) G C )  =  ( B G ( A G C ) ) )
105, 6, 93eqtr3d 2483 1  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A G ( B G C ) )  =  ( B G ( A G C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ` cfv 5430  (class class class)co 6103   NrmCVeccnv 23974   +vcpv 23975   BaseSetcba 23976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-ov 6106  df-oprab 6107  df-1st 6589  df-2nd 6590  df-grpo 23690  df-ablo 23781  df-vc 23936  df-nv 23982  df-va 23985  df-ba 23986  df-sm 23987  df-0v 23988  df-nmcv 23990
This theorem is referenced by:  nvsubadd  24047
  Copyright terms: Public domain W3C validator