MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvabs Structured version   Unicode version

Theorem nvabs 26188
Description: Norm difference property of a normed complex vector space. Problem 3 of [Kreyszig] p. 64. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvabs.1  |-  X  =  ( BaseSet `  U )
nvabs.2  |-  G  =  ( +v `  U
)
nvabs.4  |-  S  =  ( .sOLD `  U )
nvabs.6  |-  N  =  ( normCV `  U )
Assertion
Ref Expression
nvabs  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( abs `  ( ( N `
 A )  -  ( N `  B ) ) )  <_  ( N `  ( A G ( -u 1 S B ) ) ) )

Proof of Theorem nvabs
StepHypRef Expression
1 nvabs.1 . . . . 5  |-  X  =  ( BaseSet `  U )
2 nvabs.2 . . . . 5  |-  G  =  ( +v `  U
)
3 nvabs.4 . . . . 5  |-  S  =  ( .sOLD `  U )
4 nvabs.6 . . . . 5  |-  N  =  ( normCV `  U )
51, 2, 3, 4nvdif 26180 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( -u 1 S B ) ) )  =  ( N `  ( B G ( -u
1 S A ) ) ) )
65negeqd 9858 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  -u ( N `  ( A G ( -u 1 S B ) ) )  =  -u ( N `  ( B G ( -u
1 S A ) ) ) )
71, 4nvcl 26174 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( N `  B )  e.  RR )
873adant2 1024 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  B )  e.  RR )
91, 4nvcl 26174 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  A )  e.  RR )
1093adant3 1025 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  A )  e.  RR )
11 simp1 1005 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  U  e.  NrmCVec )
12 neg1cn 10702 . . . . . . . . . 10  |-  -u 1  e.  CC
131, 3nvscl 26133 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  A  e.  X )  ->  ( -u 1 S A )  e.  X )
1412, 13mp3an2 1348 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( -u 1 S A )  e.  X )
15143adant2 1024 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  ( -u 1 S A )  e.  X )
161, 2nvgcl 26125 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  ( -u 1 S A )  e.  X )  -> 
( B G (
-u 1 S A ) )  e.  X
)
1715, 16syld3an3 1309 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  ( B G ( -u 1 S A ) )  e.  X )
18173com23 1211 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( B G ( -u 1 S A ) )  e.  X )
191, 4nvcl 26174 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( B G ( -u 1 S A ) )  e.  X )  ->  ( N `  ( B G ( -u 1 S A ) ) )  e.  RR )
2011, 18, 19syl2anc 665 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( B G ( -u 1 S A ) ) )  e.  RR )
2120renegcld 10035 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  -u ( N `  ( B G ( -u 1 S A ) ) )  e.  RR )
221, 2nvcom 26126 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( B G ( -u 1 S A ) )  e.  X )  ->  ( A G ( B G ( -u 1 S A ) ) )  =  ( ( B G ( -u 1 S A ) ) G A ) )
2318, 22syld3an3 1309 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( B G ( -u 1 S A ) ) )  =  ( ( B G ( -u 1 S A ) ) G A ) )
24 simprr 764 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )
)  ->  B  e.  X )
2514adantrr 721 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( -u 1 S A )  e.  X
)
26 simprl 762 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )
)  ->  A  e.  X )
2724, 25, 263jca 1185 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( B  e.  X  /\  ( -u 1 S A )  e.  X  /\  A  e.  X ) )
281, 2nvass 26127 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  ( B  e.  X  /\  ( -u 1 S A )  e.  X  /\  A  e.  X )
)  ->  ( ( B G ( -u 1 S A ) ) G A )  =  ( B G ( (
-u 1 S A ) G A ) ) )
2927, 28syldan 472 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( ( B G ( -u 1 S A ) ) G A )  =  ( B G ( (
-u 1 S A ) G A ) ) )
30293impb 1201 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( B G (
-u 1 S A ) ) G A )  =  ( B G ( ( -u
1 S A ) G A ) ) )
31 eqid 2420 . . . . . . . . . . . 12  |-  ( 0vec `  U )  =  (
0vec `  U )
321, 2, 3, 31nvlinv 26161 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( -u 1 S A ) G A )  =  ( 0vec `  U
) )
33323adant3 1025 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( -u 1 S A ) G A )  =  ( 0vec `  U
) )
3433oveq2d 6312 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( B G ( ( -u
1 S A ) G A ) )  =  ( B G ( 0vec `  U
) ) )
351, 2, 31nv0rid 26142 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( B G ( 0vec `  U
) )  =  B )
36353adant2 1024 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( B G ( 0vec `  U
) )  =  B )
3730, 34, 363eqtrd 2465 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( B G (
-u 1 S A ) ) G A )  =  B )
3823, 37eqtrd 2461 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( B G ( -u 1 S A ) ) )  =  B )
3938fveq2d 5876 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( B G ( -u 1 S A ) ) ) )  =  ( N `
 B ) )
401, 2, 4nvtri 26185 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( B G ( -u 1 S A ) )  e.  X )  ->  ( N `  ( A G ( B G ( -u 1 S A ) ) ) )  <_  ( ( N `  A )  +  ( N `  ( B G ( -u
1 S A ) ) ) ) )
4118, 40syld3an3 1309 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( B G ( -u 1 S A ) ) ) )  <_  ( ( N `  A )  +  ( N `  ( B G ( -u
1 S A ) ) ) ) )
4239, 41eqbrtrrd 4439 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  B )  <_  ( ( N `  A )  +  ( N `  ( B G ( -u 1 S A ) ) ) ) )
4310recnd 9658 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  A )  e.  CC )
4420recnd 9658 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( B G ( -u 1 S A ) ) )  e.  CC )
4543, 44subnegd 9982 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  A
)  -  -u ( N `  ( B G ( -u 1 S A ) ) ) )  =  ( ( N `  A )  +  ( N `  ( B G ( -u
1 S A ) ) ) ) )
4642, 45breqtrrd 4443 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  B )  <_  ( ( N `  A )  -  -u ( N `  ( B G ( -u 1 S A ) ) ) ) )
478, 10, 21, 46lesubd 10206 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  -u ( N `  ( B G ( -u 1 S A ) ) )  <_  ( ( N `
 A )  -  ( N `  B ) ) )
486, 47eqbrtrd 4437 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  -u ( N `  ( A G ( -u 1 S B ) ) )  <_  ( ( N `
 A )  -  ( N `  B ) ) )
49 simp2 1006 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  X )
501, 3nvscl 26133 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  B  e.  X )  ->  ( -u 1 S B )  e.  X )
5112, 50mp3an2 1348 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( -u 1 S B )  e.  X )
52513adant2 1024 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( -u 1 S B )  e.  X )
53 simp3 1007 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  X )
541, 2nvass 26127 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  ( -u 1 S B )  e.  X  /\  B  e.  X )
)  ->  ( ( A G ( -u 1 S B ) ) G B )  =  ( A G ( (
-u 1 S B ) G B ) ) )
5511, 49, 52, 53, 54syl13anc 1266 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( A G (
-u 1 S B ) ) G B )  =  ( A G ( ( -u
1 S B ) G B ) ) )
561, 2, 3, 31nvlinv 26161 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  (
( -u 1 S B ) G B )  =  ( 0vec `  U
) )
57563adant2 1024 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( -u 1 S B ) G B )  =  ( 0vec `  U
) )
5857oveq2d 6312 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( ( -u
1 S B ) G B ) )  =  ( A G ( 0vec `  U
) ) )
591, 2, 31nv0rid 26142 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A G ( 0vec `  U
) )  =  A )
60593adant3 1025 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( 0vec `  U
) )  =  A )
6155, 58, 603eqtrd 2465 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( A G (
-u 1 S B ) ) G B )  =  A )
6261fveq2d 5876 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( ( A G ( -u 1 S B ) ) G B ) )  =  ( N `  A
) )
631, 2nvgcl 26125 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u 1 S B )  e.  X )  -> 
( A G (
-u 1 S B ) )  e.  X
)
6452, 63syld3an3 1309 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( -u 1 S B ) )  e.  X )
651, 2, 4nvtri 26185 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X  /\  B  e.  X )  ->  ( N `  ( ( A G ( -u 1 S B ) ) G B ) )  <_ 
( ( N `  ( A G ( -u
1 S B ) ) )  +  ( N `  B ) ) )
6664, 65syld3an2 1311 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( ( A G ( -u 1 S B ) ) G B ) )  <_ 
( ( N `  ( A G ( -u
1 S B ) ) )  +  ( N `  B ) ) )
6762, 66eqbrtrrd 4439 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  A )  <_  ( ( N `  ( A G ( -u
1 S B ) ) )  +  ( N `  B ) ) )
681, 4nvcl 26174 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X )  ->  ( N `  ( A G ( -u 1 S B ) ) )  e.  RR )
6911, 64, 68syl2anc 665 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( -u 1 S B ) ) )  e.  RR )
7010, 8, 69lesubaddd 10199 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( N `  A )  -  ( N `  B )
)  <_  ( N `  ( A G (
-u 1 S B ) ) )  <->  ( N `  A )  <_  (
( N `  ( A G ( -u 1 S B ) ) )  +  ( N `  B ) ) ) )
7167, 70mpbird 235 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  A
)  -  ( N `
 B ) )  <_  ( N `  ( A G ( -u
1 S B ) ) ) )
7210, 8resubcld 10036 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  A
)  -  ( N `
 B ) )  e.  RR )
7372, 69absled 13460 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( abs `  (
( N `  A
)  -  ( N `
 B ) ) )  <_  ( N `  ( A G (
-u 1 S B ) ) )  <->  ( -u ( N `  ( A G ( -u 1 S B ) ) )  <_  ( ( N `
 A )  -  ( N `  B ) )  /\  ( ( N `  A )  -  ( N `  B ) )  <_ 
( N `  ( A G ( -u 1 S B ) ) ) ) ) )
7448, 71, 73mpbir2and 930 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( abs `  ( ( N `
 A )  -  ( N `  B ) ) )  <_  ( N `  ( A G ( -u 1 S B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867   class class class wbr 4417   ` cfv 5592  (class class class)co 6296   CCcc 9526   RRcr 9527   1c1 9529    + caddc 9531    <_ cle 9665    - cmin 9849   -ucneg 9850   abscabs 13265   NrmCVeccnv 26089   +vcpv 26090   BaseSetcba 26091   .sOLDcns 26092   0veccn0v 26093   normCVcnmcv 26095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-pre-sup 9606
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-er 7362  df-en 7569  df-dom 7570  df-sdom 7571  df-sup 7953  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-div 10259  df-nn 10599  df-2 10657  df-3 10658  df-n0 10859  df-z 10927  df-uz 11149  df-rp 11292  df-seq 12200  df-exp 12259  df-cj 13130  df-re 13131  df-im 13132  df-sqrt 13266  df-abs 13267  df-grpo 25805  df-gid 25806  df-ginv 25807  df-ablo 25896  df-vc 26051  df-nv 26097  df-va 26100  df-ba 26101  df-sm 26102  df-0v 26103  df-nmcv 26105
This theorem is referenced by:  nmcvcn  26217
  Copyright terms: Public domain W3C validator