MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nv2 Structured version   Unicode version

Theorem nv2 24157
Description: A vector plus itself is two times the vector. (Contributed by NM, 9-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvdi.1  |-  X  =  ( BaseSet `  U )
nvdi.2  |-  G  =  ( +v `  U
)
nvdi.4  |-  S  =  ( .sOLD `  U )
Assertion
Ref Expression
nv2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A G A )  =  ( 2 S A ) )

Proof of Theorem nv2
StepHypRef Expression
1 eqid 2451 . . 3  |-  ( 1st `  U )  =  ( 1st `  U )
21nvvc 24138 . 2  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  e.  CVecOLD )
3 nvdi.2 . . . 4  |-  G  =  ( +v `  U
)
43vafval 24126 . . 3  |-  G  =  ( 1st `  ( 1st `  U ) )
5 nvdi.4 . . . 4  |-  S  =  ( .sOLD `  U )
65smfval 24128 . . 3  |-  S  =  ( 2nd `  ( 1st `  U ) )
7 nvdi.1 . . . 4  |-  X  =  ( BaseSet `  U )
87, 3bafval 24127 . . 3  |-  X  =  ran  G
94, 6, 8vc2 24078 . 2  |-  ( ( ( 1st `  U
)  e.  CVecOLD  /\  A  e.  X )  ->  ( A G A )  =  ( 2 S A ) )
102, 9sylan 471 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A G A )  =  ( 2 S A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   ` cfv 5519  (class class class)co 6193   1stc1st 6678   2c2 10475   CVecOLDcvc 24068   NrmCVeccnv 24107   +vcpv 24108   BaseSetcba 24109   .sOLDcns 24110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-1cn 9444
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-ov 6196  df-oprab 6197  df-1st 6680  df-2nd 6681  df-2 10484  df-vc 24069  df-nv 24115  df-va 24118  df-ba 24119  df-sm 24120  df-0v 24121  df-nmcv 24123
This theorem is referenced by:  ipidsq  24253  minvecolem2  24421
  Copyright terms: Public domain W3C validator