MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numthcor Unicode version

Theorem numthcor 8330
Description: Any set is strictly dominated by some ordinal. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
numthcor  |-  ( A  e.  V  ->  E. x  e.  On  A  ~<  x
)
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem numthcor
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq1 4175 . . 3  |-  ( y  =  A  ->  (
y  ~<  x  <->  A  ~<  x ) )
21rexbidv 2687 . 2  |-  ( y  =  A  ->  ( E. x  e.  On  y  ~<  x  <->  E. x  e.  On  A  ~<  x
) )
3 vex 2919 . . . . 5  |-  y  e. 
_V
43pwex 4342 . . . 4  |-  ~P y  e.  _V
54numth2 8307 . . 3  |-  E. x  e.  On  x  ~~  ~P y
63canth2 7219 . . . . 5  |-  y  ~<  ~P y
7 ensym 7115 . . . . 5  |-  ( x 
~~  ~P y  ->  ~P y  ~~  x )
8 sdomentr 7200 . . . . 5  |-  ( ( y  ~<  ~P y  /\  ~P y  ~~  x
)  ->  y  ~<  x )
96, 7, 8sylancr 645 . . . 4  |-  ( x 
~~  ~P y  ->  y  ~<  x )
109reximi 2773 . . 3  |-  ( E. x  e.  On  x  ~~  ~P y  ->  E. x  e.  On  y  ~<  x
)
115, 10ax-mp 8 . 2  |-  E. x  e.  On  y  ~<  x
122, 11vtoclg 2971 1  |-  ( A  e.  V  ->  E. x  e.  On  A  ~<  x
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   E.wrex 2667   ~Pcpw 3759   class class class wbr 4172   Oncon0 4541    ~~ cen 7065    ~< csdm 7067
This theorem is referenced by:  cardmin  8395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-ac2 8299
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-suc 4547  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6508  df-recs 6592  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-card 7782  df-ac 7953
  Copyright terms: Public domain W3C validator