MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numsucc Structured version   Unicode version

Theorem numsucc 11001
Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numsucc.1  |-  Y  e. 
NN0
numsucc.2  |-  T  =  ( Y  +  1 )
numsucc.3  |-  A  e. 
NN0
numsucc.4  |-  ( A  +  1 )  =  B
numsucc.5  |-  N  =  ( ( T  x.  A )  +  Y
)
Assertion
Ref Expression
numsucc  |-  ( N  +  1 )  =  ( ( T  x.  B )  +  0 )

Proof of Theorem numsucc
StepHypRef Expression
1 numsucc.2 . . . . . . 7  |-  T  =  ( Y  +  1 )
2 numsucc.1 . . . . . . . 8  |-  Y  e. 
NN0
3 1nn0 10810 . . . . . . . 8  |-  1  e.  NN0
42, 3nn0addcli 10832 . . . . . . 7  |-  ( Y  +  1 )  e. 
NN0
51, 4eqeltri 2551 . . . . . 6  |-  T  e. 
NN0
65nn0cni 10806 . . . . 5  |-  T  e.  CC
76mulid1i 9597 . . . 4  |-  ( T  x.  1 )  =  T
87oveq2i 6294 . . 3  |-  ( ( T  x.  A )  +  ( T  x.  1 ) )  =  ( ( T  x.  A )  +  T
)
9 numsucc.3 . . . . 5  |-  A  e. 
NN0
109nn0cni 10806 . . . 4  |-  A  e.  CC
11 ax-1cn 9549 . . . 4  |-  1  e.  CC
126, 10, 11adddii 9605 . . 3  |-  ( T  x.  ( A  + 
1 ) )  =  ( ( T  x.  A )  +  ( T  x.  1 ) )
131eqcomi 2480 . . . 4  |-  ( Y  +  1 )  =  T
14 numsucc.5 . . . 4  |-  N  =  ( ( T  x.  A )  +  Y
)
155, 9, 2, 13, 14numsuc 10987 . . 3  |-  ( N  +  1 )  =  ( ( T  x.  A )  +  T
)
168, 12, 153eqtr4ri 2507 . 2  |-  ( N  +  1 )  =  ( T  x.  ( A  +  1 ) )
17 numsucc.4 . . 3  |-  ( A  +  1 )  =  B
1817oveq2i 6294 . 2  |-  ( T  x.  ( A  + 
1 ) )  =  ( T  x.  B
)
199, 3nn0addcli 10832 . . . 4  |-  ( A  +  1 )  e. 
NN0
2017, 19eqeltrri 2552 . . 3  |-  B  e. 
NN0
215, 20num0u 10984 . 2  |-  ( T  x.  B )  =  ( ( T  x.  B )  +  0 )
2216, 18, 213eqtri 2500 1  |-  ( N  +  1 )  =  ( ( T  x.  B )  +  0 )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    e. wcel 1767  (class class class)co 6283   0cc0 9491   1c1 9492    + caddc 9494    x. cmul 9496   NN0cn0 10794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-ov 6286  df-om 6680  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9629  df-mnf 9630  df-ltxr 9632  df-nn 10536  df-n0 10795
This theorem is referenced by:  decsucc  11002
  Copyright terms: Public domain W3C validator