MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nummul2c Structured version   Unicode version

Theorem nummul2c 11090
Description: The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nummul1c.1  |-  T  e. 
NN0
nummul1c.2  |-  P  e. 
NN0
nummul1c.3  |-  A  e. 
NN0
nummul1c.4  |-  B  e. 
NN0
nummul1c.5  |-  N  =  ( ( T  x.  A )  +  B
)
nummul1c.6  |-  D  e. 
NN0
nummul1c.7  |-  E  e. 
NN0
nummul2c.7  |-  ( ( P  x.  A )  +  E )  =  C
nummul2c.8  |-  ( P  x.  B )  =  ( ( T  x.  E )  +  D
)
Assertion
Ref Expression
nummul2c  |-  ( P  x.  N )  =  ( ( T  x.  C )  +  D
)

Proof of Theorem nummul2c
StepHypRef Expression
1 nummul1c.5 . . . 4  |-  N  =  ( ( T  x.  A )  +  B
)
2 nummul1c.1 . . . . 5  |-  T  e. 
NN0
3 nummul1c.3 . . . . 5  |-  A  e. 
NN0
4 nummul1c.4 . . . . 5  |-  B  e. 
NN0
52, 3, 4numcl 11064 . . . 4  |-  ( ( T  x.  A )  +  B )  e. 
NN0
61, 5eqeltri 2507 . . 3  |-  N  e. 
NN0
76nn0cni 10883 . 2  |-  N  e.  CC
8 nummul1c.2 . . 3  |-  P  e. 
NN0
98nn0cni 10883 . 2  |-  P  e.  CC
10 nummul1c.6 . . 3  |-  D  e. 
NN0
11 nummul1c.7 . . 3  |-  E  e. 
NN0
123nn0cni 10883 . . . . . 6  |-  A  e.  CC
1312, 9mulcomi 9651 . . . . 5  |-  ( A  x.  P )  =  ( P  x.  A
)
1413oveq1i 6313 . . . 4  |-  ( ( A  x.  P )  +  E )  =  ( ( P  x.  A )  +  E
)
15 nummul2c.7 . . . 4  |-  ( ( P  x.  A )  +  E )  =  C
1614, 15eqtri 2452 . . 3  |-  ( ( A  x.  P )  +  E )  =  C
174nn0cni 10883 . . . 4  |-  B  e.  CC
18 nummul2c.8 . . . 4  |-  ( P  x.  B )  =  ( ( T  x.  E )  +  D
)
199, 17, 18mulcomli 9652 . . 3  |-  ( B  x.  P )  =  ( ( T  x.  E )  +  D
)
202, 8, 3, 4, 1, 10, 11, 16, 19nummul1c 11089 . 2  |-  ( N  x.  P )  =  ( ( T  x.  C )  +  D
)
217, 9, 20mulcomli 9652 1  |-  ( P  x.  N )  =  ( ( T  x.  C )  +  D
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1438    e. wcel 1869  (class class class)co 6303    + caddc 9544    x. cmul 9546   NN0cn0 10871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-er 7369  df-en 7576  df-dom 7577  df-sdom 7578  df-pnf 9679  df-mnf 9680  df-ltxr 9682  df-sub 9864  df-nn 10612  df-n0 10872
This theorem is referenced by:  decmul2c  11101
  Copyright terms: Public domain W3C validator