MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numltc Structured version   Unicode version

Theorem numltc 10771
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numlt.1  |-  T  e.  NN
numlt.2  |-  A  e. 
NN0
numlt.3  |-  B  e. 
NN0
numltc.3  |-  C  e. 
NN0
numltc.4  |-  D  e. 
NN0
numltc.5  |-  C  < 
T
numltc.6  |-  A  < 
B
Assertion
Ref Expression
numltc  |-  ( ( T  x.  A )  +  C )  < 
( ( T  x.  B )  +  D
)

Proof of Theorem numltc
StepHypRef Expression
1 numlt.1 . . . . 5  |-  T  e.  NN
2 numlt.2 . . . . 5  |-  A  e. 
NN0
3 numltc.3 . . . . 5  |-  C  e. 
NN0
4 numltc.5 . . . . 5  |-  C  < 
T
51, 2, 3, 1, 4numlt 10770 . . . 4  |-  ( ( T  x.  A )  +  C )  < 
( ( T  x.  A )  +  T
)
61nnrei 10327 . . . . . . 7  |-  T  e.  RR
76recni 9394 . . . . . 6  |-  T  e.  CC
82nn0rei 10586 . . . . . . 7  |-  A  e.  RR
98recni 9394 . . . . . 6  |-  A  e.  CC
10 ax-1cn 9336 . . . . . 6  |-  1  e.  CC
117, 9, 10adddii 9392 . . . . 5  |-  ( T  x.  ( A  + 
1 ) )  =  ( ( T  x.  A )  +  ( T  x.  1 ) )
127mulid1i 9384 . . . . . 6  |-  ( T  x.  1 )  =  T
1312oveq2i 6101 . . . . 5  |-  ( ( T  x.  A )  +  ( T  x.  1 ) )  =  ( ( T  x.  A )  +  T
)
1411, 13eqtri 2461 . . . 4  |-  ( T  x.  ( A  + 
1 ) )  =  ( ( T  x.  A )  +  T
)
155, 14breqtrri 4314 . . 3  |-  ( ( T  x.  A )  +  C )  < 
( T  x.  ( A  +  1 ) )
16 numltc.6 . . . . 5  |-  A  < 
B
17 numlt.3 . . . . . 6  |-  B  e. 
NN0
18 nn0ltp1le 10698 . . . . . 6  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  <  B  <->  ( A  +  1 )  <_  B ) )
192, 17, 18mp2an 667 . . . . 5  |-  ( A  <  B  <->  ( A  +  1 )  <_  B )
2016, 19mpbi 208 . . . 4  |-  ( A  +  1 )  <_  B
211nngt0i 10351 . . . . 5  |-  0  <  T
22 peano2re 9538 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
238, 22ax-mp 5 . . . . . 6  |-  ( A  +  1 )  e.  RR
2417nn0rei 10586 . . . . . 6  |-  B  e.  RR
2523, 24, 6lemul2i 10252 . . . . 5  |-  ( 0  <  T  ->  (
( A  +  1 )  <_  B  <->  ( T  x.  ( A  +  1 ) )  <_  ( T  x.  B )
) )
2621, 25ax-mp 5 . . . 4  |-  ( ( A  +  1 )  <_  B  <->  ( T  x.  ( A  +  1 ) )  <_  ( T  x.  B )
)
2720, 26mpbi 208 . . 3  |-  ( T  x.  ( A  + 
1 ) )  <_ 
( T  x.  B
)
286, 8remulcli 9396 . . . . 5  |-  ( T  x.  A )  e.  RR
293nn0rei 10586 . . . . 5  |-  C  e.  RR
3028, 29readdcli 9395 . . . 4  |-  ( ( T  x.  A )  +  C )  e.  RR
316, 23remulcli 9396 . . . 4  |-  ( T  x.  ( A  + 
1 ) )  e.  RR
326, 24remulcli 9396 . . . 4  |-  ( T  x.  B )  e.  RR
3330, 31, 32ltletri 9498 . . 3  |-  ( ( ( ( T  x.  A )  +  C
)  <  ( T  x.  ( A  +  1 ) )  /\  ( T  x.  ( A  +  1 ) )  <_  ( T  x.  B ) )  -> 
( ( T  x.  A )  +  C
)  <  ( T  x.  B ) )
3415, 27, 33mp2an 667 . 2  |-  ( ( T  x.  A )  +  C )  < 
( T  x.  B
)
35 numltc.4 . . 3  |-  D  e. 
NN0
3632, 35nn0addge1i 10624 . 2  |-  ( T  x.  B )  <_ 
( ( T  x.  B )  +  D
)
3735nn0rei 10586 . . . 4  |-  D  e.  RR
3832, 37readdcli 9395 . . 3  |-  ( ( T  x.  B )  +  D )  e.  RR
3930, 32, 38ltletri 9498 . 2  |-  ( ( ( ( T  x.  A )  +  C
)  <  ( T  x.  B )  /\  ( T  x.  B )  <_  ( ( T  x.  B )  +  D
) )  ->  (
( T  x.  A
)  +  C )  <  ( ( T  x.  B )  +  D ) )
4034, 36, 39mp2an 667 1  |-  ( ( T  x.  A )  +  C )  < 
( ( T  x.  B )  +  D
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    e. wcel 1761   class class class wbr 4289  (class class class)co 6090   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    < clt 9414    <_ cle 9415   NNcn 10318   NN0cn0 10575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-n0 10576  df-z 10643
This theorem is referenced by:  decltc  10773  numlti  10775
  Copyright terms: Public domain W3C validator