Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  numclwwlkovh Structured version   Unicode version

Theorem numclwwlkovh 30843
Description: Value of operation H, mapping a vertex v and a nonnegative integer n to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v" according to Huneke. (Contributed by Alexander van der Vekens, 26-Aug-2018.)
Hypotheses
Ref Expression
numclwwlk.c  |-  C  =  ( n  e.  NN0  |->  ( ( V ClWWalksN  E ) `
 n ) )
numclwwlk.f  |-  F  =  ( v  e.  V ,  n  e.  NN0  |->  { w  e.  ( C `  n )  |  ( w ` 
0 )  =  v } )
numclwwlk.g  |-  G  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( C `
 n )  |  ( ( w ` 
0 )  =  v  /\  ( w `  ( n  -  2
) )  =  ( w `  0 ) ) } )
numclwwlk.q  |-  Q  =  ( v  e.  V ,  n  e.  NN0  |->  { w  e.  (
( V WWalksN  E ) `  n )  |  ( ( w `  0
)  =  v  /\  ( lastS  `  w )  =/=  v ) } )
numclwwlk.h  |-  H  =  ( v  e.  V ,  n  e.  NN0  |->  { w  e.  ( C `  n )  |  ( ( w `
 0 )  =  v  /\  ( w `
 ( n  - 
2 ) )  =/=  ( w `  0
) ) } )
Assertion
Ref Expression
numclwwlkovh  |-  ( ( X  e.  V  /\  N  e.  NN0 )  -> 
( X H N )  =  { w  e.  ( C `  N
)  |  ( ( w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =/=  ( w ` 
0 ) ) } )
Distinct variable groups:    n, E    n, N    n, V    w, C    w, N    C, n, v, w    v, N    n, X, v, w    v, V   
w, E    w, V    w, F    w, Q    w, G    v, E
Allowed substitution hints:    Q( v, n)    F( v, n)    G( v, n)    H( w, v, n)

Proof of Theorem numclwwlkovh
StepHypRef Expression
1 fveq2 5800 . . . 4  |-  ( n  =  N  ->  ( C `  n )  =  ( C `  N ) )
21adantl 466 . . 3  |-  ( ( v  =  X  /\  n  =  N )  ->  ( C `  n
)  =  ( C `
 N ) )
3 eqeq2 2469 . . . . 5  |-  ( v  =  X  ->  (
( w `  0
)  =  v  <->  ( w `  0 )  =  X ) )
43adantr 465 . . . 4  |-  ( ( v  =  X  /\  n  =  N )  ->  ( ( w ` 
0 )  =  v  <-> 
( w `  0
)  =  X ) )
5 oveq1 6208 . . . . . . 7  |-  ( n  =  N  ->  (
n  -  2 )  =  ( N  - 
2 ) )
65fveq2d 5804 . . . . . 6  |-  ( n  =  N  ->  (
w `  ( n  -  2 ) )  =  ( w `  ( N  -  2
) ) )
76adantl 466 . . . . 5  |-  ( ( v  =  X  /\  n  =  N )  ->  ( w `  (
n  -  2 ) )  =  ( w `
 ( N  - 
2 ) ) )
87neeq1d 2729 . . . 4  |-  ( ( v  =  X  /\  n  =  N )  ->  ( ( w `  ( n  -  2
) )  =/=  (
w `  0 )  <->  ( w `  ( N  -  2 ) )  =/=  ( w ` 
0 ) ) )
94, 8anbi12d 710 . . 3  |-  ( ( v  =  X  /\  n  =  N )  ->  ( ( ( w `
 0 )  =  v  /\  ( w `
 ( n  - 
2 ) )  =/=  ( w `  0
) )  <->  ( (
w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =/=  ( w ` 
0 ) ) ) )
102, 9rabeqbidv 3073 . 2  |-  ( ( v  =  X  /\  n  =  N )  ->  { w  e.  ( C `  n )  |  ( ( w `
 0 )  =  v  /\  ( w `
 ( n  - 
2 ) )  =/=  ( w `  0
) ) }  =  { w  e.  ( C `  N )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =/=  ( w `  0
) ) } )
11 numclwwlk.h . 2  |-  H  =  ( v  e.  V ,  n  e.  NN0  |->  { w  e.  ( C `  n )  |  ( ( w `
 0 )  =  v  /\  ( w `
 ( n  - 
2 ) )  =/=  ( w `  0
) ) } )
12 fvex 5810 . . 3  |-  ( C `
 N )  e. 
_V
1312rabex 4552 . 2  |-  { w  e.  ( C `  N
)  |  ( ( w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =/=  ( w ` 
0 ) ) }  e.  _V
1410, 11, 13ovmpt2a 6332 1  |-  ( ( X  e.  V  /\  N  e.  NN0 )  -> 
( X H N )  =  { w  e.  ( C `  N
)  |  ( ( w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =/=  ( w ` 
0 ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648   {crab 2803    |-> cmpt 4459   ` cfv 5527  (class class class)co 6201    |-> cmpt2 6203   0cc0 9394    - cmin 9707   2c2 10483   NN0cn0 10691   ZZ>=cuz 10973   lastS clsw 12341   WWalksN cwwlkn 30461   ClWWalksN cclwwlkn 30563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pr 4640
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-iota 5490  df-fun 5529  df-fv 5535  df-ov 6204  df-oprab 6205  df-mpt2 6206
This theorem is referenced by:  numclwwlk2lem1  30844  numclwlk2lem2f  30845  numclwlk2lem2f1o  30847  numclwwlk3lem  30850
  Copyright terms: Public domain W3C validator