MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem2f1 Structured version   Unicode version

Theorem numclwlk1lem2f1 24926
Description: T is a 1-1 function. (Contributed by AV, 26-Sep-2018.) (Proof shortened by AV, 23-Oct-2018.)
Hypotheses
Ref Expression
numclwwlk.c  |-  C  =  ( n  e.  NN0  |->  ( ( V ClWWalksN  E ) `
 n ) )
numclwwlk.f  |-  F  =  ( v  e.  V ,  n  e.  NN0  |->  { w  e.  ( C `  n )  |  ( w ` 
0 )  =  v } )
numclwwlk.g  |-  G  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( C `
 n )  |  ( ( w ` 
0 )  =  v  /\  ( w `  ( n  -  2
) )  =  ( w `  0 ) ) } )
numclwwlk.t  |-  T  =  ( w  e.  ( X G N ) 
|->  <. ( w substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( w `  ( N  -  1
) ) >. )
Assertion
Ref Expression
numclwlk1lem2f1  |-  ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  T :
( X G N ) -1-1-> ( ( X F ( N  - 
2 ) )  X.  ( <. V ,  E >. Neighbors  X ) ) )
Distinct variable groups:    n, E    n, N    n, V    w, C    w, N    C, n, v, w    v, N    n, X, v, w    v, V   
w, E    w, V    w, F    w, G
Allowed substitution hints:    T( w, v, n)    E( v)    F( v, n)    G( v, n)

Proof of Theorem numclwlk1lem2f1
Dummy variables  u  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 numclwwlk.c . . 3  |-  C  =  ( n  e.  NN0  |->  ( ( V ClWWalksN  E ) `
 n ) )
2 numclwwlk.f . . 3  |-  F  =  ( v  e.  V ,  n  e.  NN0  |->  { w  e.  ( C `  n )  |  ( w ` 
0 )  =  v } )
3 numclwwlk.g . . 3  |-  G  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( C `
 n )  |  ( ( w ` 
0 )  =  v  /\  ( w `  ( n  -  2
) )  =  ( w `  0 ) ) } )
4 numclwwlk.t . . 3  |-  T  =  ( w  e.  ( X G N ) 
|->  <. ( w substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( w `  ( N  -  1
) ) >. )
51, 2, 3, 4numclwlk1lem2f 24924 . 2  |-  ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  T :
( X G N ) --> ( ( X F ( N  - 
2 ) )  X.  ( <. V ,  E >. Neighbors  X ) ) )
61, 2, 3, 4numclwlk1lem2fv 24925 . . . . . . 7  |-  ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( p  e.  ( X G N )  ->  ( T `  p )  =  <. ( p substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( p `
 ( N  - 
1 ) ) >.
) )
76imp 429 . . . . . 6  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  p  e.  ( X G N ) )  -> 
( T `  p
)  =  <. (
p substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( p `
 ( N  - 
1 ) ) >.
)
87adantrr 716 . . . . 5  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( p  e.  ( X G N )  /\  u  e.  ( X G N ) ) )  ->  ( T `  p )  =  <. ( p substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( p `
 ( N  - 
1 ) ) >.
)
91, 2, 3, 4numclwlk1lem2fv 24925 . . . . . . 7  |-  ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( u  e.  ( X G N )  ->  ( T `  u )  =  <. ( u substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( u `
 ( N  - 
1 ) ) >.
) )
109imp 429 . . . . . 6  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  u  e.  ( X G N ) )  -> 
( T `  u
)  =  <. (
u substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( u `
 ( N  - 
1 ) ) >.
)
1110adantrl 715 . . . . 5  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( p  e.  ( X G N )  /\  u  e.  ( X G N ) ) )  ->  ( T `  u )  =  <. ( u substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( u `
 ( N  - 
1 ) ) >.
)
128, 11eqeq12d 2489 . . . 4  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( p  e.  ( X G N )  /\  u  e.  ( X G N ) ) )  ->  ( ( T `
 p )  =  ( T `  u
)  <->  <. ( p substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( p `  ( N  -  1
) ) >.  =  <. ( u substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( u `
 ( N  - 
1 ) ) >.
) )
13 ovex 6320 . . . . . 6  |-  ( p substr  <. 0 ,  ( N  -  2 ) >.
)  e.  _V
14 fvex 5882 . . . . . 6  |-  ( p `
 ( N  - 
1 ) )  e. 
_V
1513, 14opth 4727 . . . . 5  |-  ( <.
( p substr  <. 0 ,  ( N  -  2 ) >. ) ,  ( p `  ( N  -  1 ) )
>.  =  <. ( u substr  <. 0 ,  ( N  -  2 ) >.
) ,  ( u `
 ( N  - 
1 ) ) >.  <->  ( ( p substr  <. 0 ,  ( N  - 
2 ) >. )  =  ( u substr  <. 0 ,  ( N  - 
2 ) >. )  /\  ( p `  ( N  -  1 ) )  =  ( u `
 ( N  - 
1 ) ) ) )
16 uzuzle23 11134 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  3
)  ->  N  e.  ( ZZ>= `  2 )
)
171, 2, 3numclwwlkovgelim 24921 . . . . . . . 8  |-  ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( p  e.  ( X G N )  ->  ( (
p  e. Word  V  /\  ( # `  p )  =  N )  /\  ( ( p ` 
0 )  =  X  /\  ( p `  ( N  -  2
) )  =  ( p `  0 ) ) ) ) )
1816, 17syl3an3 1263 . . . . . . 7  |-  ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( p  e.  ( X G N )  ->  ( (
p  e. Word  V  /\  ( # `  p )  =  N )  /\  ( ( p ` 
0 )  =  X  /\  ( p `  ( N  -  2
) )  =  ( p `  0 ) ) ) ) )
191, 2, 3numclwwlkovgelim 24921 . . . . . . . 8  |-  ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= `  2 )
)  ->  ( u  e.  ( X G N )  ->  ( (
u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )
2016, 19syl3an3 1263 . . . . . . 7  |-  ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( u  e.  ( X G N )  ->  ( (
u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )
21 simpll 753 . . . . . . . . . . 11  |-  ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  ->  p  e. Word  V )
2221ad2antrl 727 . . . . . . . . . 10  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( ( ( p  e. Word  V  /\  ( # `
 p )  =  N )  /\  (
( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )  ->  p  e. Word  V
)
23 simprll 761 . . . . . . . . . . 11  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u
)  =  N )  /\  ( ( u `
 0 )  =  X  /\  ( u `
 ( N  - 
2 ) )  =  ( u `  0
) ) ) )  ->  u  e. Word  V
)
2423adantl 466 . . . . . . . . . 10  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( ( ( p  e. Word  V  /\  ( # `
 p )  =  N )  /\  (
( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )  ->  u  e. Word  V
)
25 eleq1 2539 . . . . . . . . . . . . . . . . 17  |-  ( N  =  ( # `  p
)  ->  ( N  e.  ( ZZ>= `  3 )  <->  (
# `  p )  e.  ( ZZ>= `  3 )
) )
2625eqcoms 2479 . . . . . . . . . . . . . . . 16  |-  ( (
# `  p )  =  N  ->  ( N  e.  ( ZZ>= `  3
)  <->  ( # `  p
)  e.  ( ZZ>= ` 
3 ) ) )
27 eluz2 11100 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  p )  e.  ( ZZ>= `  3 )  <->  ( 3  e.  ZZ  /\  ( # `  p )  e.  ZZ  /\  3  <_  ( # `  p
) ) )
28 1red 9623 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  p )  e.  ZZ  ->  1  e.  RR )
29 3re 10621 . . . . . . . . . . . . . . . . . . . . . 22  |-  3  e.  RR
3029a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  p )  e.  ZZ  ->  3  e.  RR )
31 zre 10880 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  p )  e.  ZZ  ->  ( # `  p
)  e.  RR )
3228, 30, 313jca 1176 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  p )  e.  ZZ  ->  ( 1  e.  RR  /\  3  e.  RR  /\  ( # `  p )  e.  RR ) )
33 1lt3 10716 . . . . . . . . . . . . . . . . . . . 20  |-  1  <  3
34 ltletr 9688 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  RR  /\  3  e.  RR  /\  ( # `
 p )  e.  RR )  ->  (
( 1  <  3  /\  3  <_  ( # `  p ) )  -> 
1  <  ( # `  p
) ) )
3534expd 436 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  RR  /\  3  e.  RR  /\  ( # `
 p )  e.  RR )  ->  (
1  <  3  ->  ( 3  <_  ( # `  p
)  ->  1  <  (
# `  p )
) ) )
3632, 33, 35mpisyl 18 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  p )  e.  ZZ  ->  ( 3  <_  ( # `  p
)  ->  1  <  (
# `  p )
) )
3736imp 429 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( # `  p
)  e.  ZZ  /\  3  <_  ( # `  p
) )  ->  1  <  ( # `  p
) )
38373adant1 1014 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  e.  ZZ  /\  ( # `  p )  e.  ZZ  /\  3  <_  ( # `  p
) )  ->  1  <  ( # `  p
) )
3927, 38sylbi 195 . . . . . . . . . . . . . . . 16  |-  ( (
# `  p )  e.  ( ZZ>= `  3 )  ->  1  <  ( # `  p ) )
4026, 39syl6bi 228 . . . . . . . . . . . . . . 15  |-  ( (
# `  p )  =  N  ->  ( N  e.  ( ZZ>= `  3
)  ->  1  <  (
# `  p )
) )
4140com12 31 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( ( # `
 p )  =  N  ->  1  <  (
# `  p )
) )
42413ad2ant3 1019 . . . . . . . . . . . . 13  |-  ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( ( # `
 p )  =  N  ->  1  <  (
# `  p )
) )
4342com12 31 . . . . . . . . . . . 12  |-  ( (
# `  p )  =  N  ->  ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  1  <  (
# `  p )
) )
4443ad3antlr 730 . . . . . . . . . . 11  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u
)  =  N )  /\  ( ( u `
 0 )  =  X  /\  ( u `
 ( N  - 
2 ) )  =  ( u `  0
) ) ) )  ->  ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  ->  1  <  ( # `
 p ) ) )
4544impcom 430 . . . . . . . . . 10  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( ( ( p  e. Word  V  /\  ( # `
 p )  =  N )  /\  (
( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )  ->  1  <  ( # `
 p ) )
46 2swrd2eqwrdeq 12870 . . . . . . . . . 10  |-  ( ( p  e. Word  V  /\  u  e. Word  V  /\  1  <  ( # `  p
) )  ->  (
p  =  u  <->  ( ( # `
 p )  =  ( # `  u
)  /\  ( (
p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
u substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  (
p `  ( ( # `
 p )  - 
2 ) )  =  ( u `  (
( # `  p )  -  2 ) )  /\  ( lastS  `  p
)  =  ( lastS  `  u
) ) ) ) )
4722, 24, 45, 46syl3anc 1228 . . . . . . . . 9  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( ( ( p  e. Word  V  /\  ( # `
 p )  =  N )  /\  (
( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )  ->  ( p  =  u  <->  ( ( # `  p )  =  (
# `  u )  /\  ( ( p substr  <. 0 ,  ( ( # `  p )  -  2 ) >. )  =  ( u substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  (
p `  ( ( # `
 p )  - 
2 ) )  =  ( u `  (
( # `  p )  -  2 ) )  /\  ( lastS  `  p
)  =  ( lastS  `  u
) ) ) ) )
48 eqtr3 2495 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( # `  p
)  =  N  /\  ( # `  u )  =  N )  -> 
( # `  p )  =  ( # `  u
) )
4948expcom 435 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  u )  =  N  ->  ( (
# `  p )  =  N  ->  ( # `  p )  =  (
# `  u )
) )
5049adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  -> 
( ( # `  p
)  =  N  -> 
( # `  p )  =  ( # `  u
) ) )
5150adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( u  e. Word  V  /\  ( # `  u
)  =  N )  /\  ( ( u `
 0 )  =  X  /\  ( u `
 ( N  - 
2 ) )  =  ( u `  0
) ) )  -> 
( ( # `  p
)  =  N  -> 
( # `  p )  =  ( # `  u
) ) )
5251com12 31 . . . . . . . . . . . . . 14  |-  ( (
# `  p )  =  N  ->  ( ( ( u  e. Word  V  /\  ( # `  u
)  =  N )  /\  ( ( u `
 0 )  =  X  /\  ( u `
 ( N  - 
2 ) )  =  ( u `  0
) ) )  -> 
( # `  p )  =  ( # `  u
) ) )
5352adantl 466 . . . . . . . . . . . . 13  |-  ( ( p  e. Word  V  /\  ( # `  p )  =  N )  -> 
( ( ( u  e. Word  V  /\  ( # `
 u )  =  N )  /\  (
( u `  0
)  =  X  /\  ( u `  ( N  -  2 ) )  =  ( u `
 0 ) ) )  ->  ( # `  p
)  =  ( # `  u ) ) )
5453adantr 465 . . . . . . . . . . . 12  |-  ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  -> 
( ( ( u  e. Word  V  /\  ( # `
 u )  =  N )  /\  (
( u `  0
)  =  X  /\  ( u `  ( N  -  2 ) )  =  ( u `
 0 ) ) )  ->  ( # `  p
)  =  ( # `  u ) ) )
5554imp 429 . . . . . . . . . . 11  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u
)  =  N )  /\  ( ( u `
 0 )  =  X  /\  ( u `
 ( N  - 
2 ) )  =  ( u `  0
) ) ) )  ->  ( # `  p
)  =  ( # `  u ) )
5655adantl 466 . . . . . . . . . 10  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( ( ( p  e. Word  V  /\  ( # `
 p )  =  N )  /\  (
( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )  ->  ( # `  p
)  =  ( # `  u ) )
5756biantrurd 508 . . . . . . . . 9  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( ( ( p  e. Word  V  /\  ( # `
 p )  =  N )  /\  (
( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )  ->  ( ( ( p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
u substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  (
p `  ( ( # `
 p )  - 
2 ) )  =  ( u `  (
( # `  p )  -  2 ) )  /\  ( lastS  `  p
)  =  ( lastS  `  u
) )  <->  ( ( # `
 p )  =  ( # `  u
)  /\  ( (
p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
u substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  (
p `  ( ( # `
 p )  - 
2 ) )  =  ( u `  (
( # `  p )  -  2 ) )  /\  ( lastS  `  p
)  =  ( lastS  `  u
) ) ) ) )
58 3anan12 986 . . . . . . . . . . 11  |-  ( ( ( p substr  <. 0 ,  ( ( # `  p )  -  2 ) >. )  =  ( u substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  (
p `  ( ( # `
 p )  - 
2 ) )  =  ( u `  (
( # `  p )  -  2 ) )  /\  ( lastS  `  p
)  =  ( lastS  `  u
) )  <->  ( (
p `  ( ( # `
 p )  - 
2 ) )  =  ( u `  (
( # `  p )  -  2 ) )  /\  ( ( p substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  =  ( u substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  /\  ( lastS  `  p
)  =  ( lastS  `  u
) ) ) )
5958a1i 11 . . . . . . . . . 10  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( ( ( p  e. Word  V  /\  ( # `
 p )  =  N )  /\  (
( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )  ->  ( ( ( p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
u substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  (
p `  ( ( # `
 p )  - 
2 ) )  =  ( u `  (
( # `  p )  -  2 ) )  /\  ( lastS  `  p
)  =  ( lastS  `  u
) )  <->  ( (
p `  ( ( # `
 p )  - 
2 ) )  =  ( u `  (
( # `  p )  -  2 ) )  /\  ( ( p substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  =  ( u substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  /\  ( lastS  `  p
)  =  ( lastS  `  u
) ) ) ) )
60 eqeq2 2482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p `  0 )  =  X  ->  (
( p `  ( N  -  2 ) )  =  ( p `
 0 )  <->  ( p `  ( N  -  2 ) )  =  X ) )
61 oveq1 6302 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  =  ( # `  p
)  ->  ( N  -  2 )  =  ( ( # `  p
)  -  2 ) )
6261eqcoms 2479 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
# `  p )  =  N  ->  ( N  -  2 )  =  ( ( # `  p
)  -  2 ) )
6362fveq2d 5876 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
# `  p )  =  N  ->  ( p `
 ( N  - 
2 ) )  =  ( p `  (
( # `  p )  -  2 ) ) )
6463eqeq1d 2469 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  p )  =  N  ->  ( ( p `  ( N  -  2 ) )  =  X  <->  ( p `  ( ( # `  p
)  -  2 ) )  =  X ) )
6564biimpd 207 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  p )  =  N  ->  ( ( p `  ( N  -  2 ) )  =  X  ->  (
p `  ( ( # `
 p )  - 
2 ) )  =  X ) )
6665com12 31 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p `  ( N  -  2 ) )  =  X  ->  (
( # `  p )  =  N  ->  (
p `  ( ( # `
 p )  - 
2 ) )  =  X ) )
6760, 66syl6bi 228 . . . . . . . . . . . . . . . . . 18  |-  ( ( p `  0 )  =  X  ->  (
( p `  ( N  -  2 ) )  =  ( p `
 0 )  -> 
( ( # `  p
)  =  N  -> 
( p `  (
( # `  p )  -  2 ) )  =  X ) ) )
6867imp 429 . . . . . . . . . . . . . . . . 17  |-  ( ( ( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) )  ->  ( ( # `  p )  =  N  ->  ( p `  ( ( # `  p
)  -  2 ) )  =  X ) )
6968com12 31 . . . . . . . . . . . . . . . 16  |-  ( (
# `  p )  =  N  ->  ( ( ( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) )  ->  ( p `  ( ( # `  p
)  -  2 ) )  =  X ) )
7069adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( p  e. Word  V  /\  ( # `  p )  =  N )  -> 
( ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) )  ->  (
p `  ( ( # `
 p )  - 
2 ) )  =  X ) )
7170imp 429 . . . . . . . . . . . . . 14  |-  ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  -> 
( p `  (
( # `  p )  -  2 ) )  =  X )
7271adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u
)  =  N )  /\  ( ( u `
 0 )  =  X  /\  ( u `
 ( N  - 
2 ) )  =  ( u `  0
) ) ) )  ->  ( p `  ( ( # `  p
)  -  2 ) )  =  X )
73 oveq1 6302 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  p )  =  N  ->  ( (
# `  p )  -  2 )  =  ( N  -  2 ) )
7473fveq2d 5876 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  p )  =  N  ->  ( u `
 ( ( # `  p )  -  2 ) )  =  ( u `  ( N  -  2 ) ) )
75 eqeq1 2471 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( u `  0 )  =  ( u `  ( N  -  2
) )  ->  (
( u `  0
)  =  X  <->  ( u `  ( N  -  2 ) )  =  X ) )
7675eqcoms 2479 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( u `  ( N  -  2 ) )  =  ( u ` 
0 )  ->  (
( u `  0
)  =  X  <->  ( u `  ( N  -  2 ) )  =  X ) )
7776biimpd 207 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( u `  ( N  -  2 ) )  =  ( u ` 
0 )  ->  (
( u `  0
)  =  X  -> 
( u `  ( N  -  2 ) )  =  X ) )
7877impcom 430 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( u `  0
)  =  X  /\  ( u `  ( N  -  2 ) )  =  ( u `
 0 ) )  ->  ( u `  ( N  -  2
) )  =  X )
7978adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( u  e. Word  V  /\  ( # `  u
)  =  N )  /\  ( ( u `
 0 )  =  X  /\  ( u `
 ( N  - 
2 ) )  =  ( u `  0
) ) )  -> 
( u `  ( N  -  2 ) )  =  X )
8074, 79sylan9eq 2528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( # `  p
)  =  N  /\  ( ( u  e. Word  V  /\  ( # `  u
)  =  N )  /\  ( ( u `
 0 )  =  X  /\  ( u `
 ( N  - 
2 ) )  =  ( u `  0
) ) ) )  ->  ( u `  ( ( # `  p
)  -  2 ) )  =  X )
8180ex 434 . . . . . . . . . . . . . . . 16  |-  ( (
# `  p )  =  N  ->  ( ( ( u  e. Word  V  /\  ( # `  u
)  =  N )  /\  ( ( u `
 0 )  =  X  /\  ( u `
 ( N  - 
2 ) )  =  ( u `  0
) ) )  -> 
( u `  (
( # `  p )  -  2 ) )  =  X ) )
8281adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( p  e. Word  V  /\  ( # `  p )  =  N )  -> 
( ( ( u  e. Word  V  /\  ( # `
 u )  =  N )  /\  (
( u `  0
)  =  X  /\  ( u `  ( N  -  2 ) )  =  ( u `
 0 ) ) )  ->  ( u `  ( ( # `  p
)  -  2 ) )  =  X ) )
8382adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  -> 
( ( ( u  e. Word  V  /\  ( # `
 u )  =  N )  /\  (
( u `  0
)  =  X  /\  ( u `  ( N  -  2 ) )  =  ( u `
 0 ) ) )  ->  ( u `  ( ( # `  p
)  -  2 ) )  =  X ) )
8483imp 429 . . . . . . . . . . . . 13  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u
)  =  N )  /\  ( ( u `
 0 )  =  X  /\  ( u `
 ( N  - 
2 ) )  =  ( u `  0
) ) ) )  ->  ( u `  ( ( # `  p
)  -  2 ) )  =  X )
8572, 84eqtr4d 2511 . . . . . . . . . . . 12  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u
)  =  N )  /\  ( ( u `
 0 )  =  X  /\  ( u `
 ( N  - 
2 ) )  =  ( u `  0
) ) ) )  ->  ( p `  ( ( # `  p
)  -  2 ) )  =  ( u `
 ( ( # `  p )  -  2 ) ) )
8685adantl 466 . . . . . . . . . . 11  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( ( ( p  e. Word  V  /\  ( # `
 p )  =  N )  /\  (
( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )  ->  ( p `  ( ( # `  p
)  -  2 ) )  =  ( u `
 ( ( # `  p )  -  2 ) ) )
8786biantrurd 508 . . . . . . . . . 10  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( ( ( p  e. Word  V  /\  ( # `
 p )  =  N )  /\  (
( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )  ->  ( ( ( p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
u substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  ( lastS  `  p )  =  ( lastS  `  u ) )  <->  ( (
p `  ( ( # `
 p )  - 
2 ) )  =  ( u `  (
( # `  p )  -  2 ) )  /\  ( ( p substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  =  ( u substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  /\  ( lastS  `  p
)  =  ( lastS  `  u
) ) ) ) )
8873opeq2d 4226 . . . . . . . . . . . . . . 15  |-  ( (
# `  p )  =  N  ->  <. 0 ,  ( ( # `  p )  -  2 ) >.  =  <. 0 ,  ( N  -  2 ) >.
)
8988oveq2d 6311 . . . . . . . . . . . . . 14  |-  ( (
# `  p )  =  N  ->  ( p substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  =  ( p substr  <. 0 ,  ( N  -  2 ) >.
) )
9088oveq2d 6311 . . . . . . . . . . . . . 14  |-  ( (
# `  p )  =  N  ->  ( u substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  =  ( u substr  <. 0 ,  ( N  -  2 ) >.
) )
9189, 90eqeq12d 2489 . . . . . . . . . . . . 13  |-  ( (
# `  p )  =  N  ->  ( ( p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
u substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  <->  ( p substr  <. 0 ,  ( N  - 
2 ) >. )  =  ( u substr  <. 0 ,  ( N  - 
2 ) >. )
) )
9291ad3antlr 730 . . . . . . . . . . . 12  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u
)  =  N )  /\  ( ( u `
 0 )  =  X  /\  ( u `
 ( N  - 
2 ) )  =  ( u `  0
) ) ) )  ->  ( ( p substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  =  ( u substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  <->  ( p substr  <. 0 ,  ( N  - 
2 ) >. )  =  ( u substr  <. 0 ,  ( N  - 
2 ) >. )
) )
9392adantl 466 . . . . . . . . . . 11  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( ( ( p  e. Word  V  /\  ( # `
 p )  =  N )  /\  (
( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )  ->  ( ( p substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  =  ( u substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  <->  ( p substr  <. 0 ,  ( N  - 
2 ) >. )  =  ( u substr  <. 0 ,  ( N  - 
2 ) >. )
) )
94 lsw 12564 . . . . . . . . . . . . . . 15  |-  ( p  e. Word  V  ->  ( lastS  `  p )  =  ( p `  ( (
# `  p )  -  1 ) ) )
95 oveq1 6302 . . . . . . . . . . . . . . . 16  |-  ( (
# `  p )  =  N  ->  ( (
# `  p )  -  1 )  =  ( N  -  1 ) )
9695fveq2d 5876 . . . . . . . . . . . . . . 15  |-  ( (
# `  p )  =  N  ->  ( p `
 ( ( # `  p )  -  1 ) )  =  ( p `  ( N  -  1 ) ) )
9794, 96sylan9eq 2528 . . . . . . . . . . . . . 14  |-  ( ( p  e. Word  V  /\  ( # `  p )  =  N )  -> 
( lastS  `  p )  =  ( p `  ( N  -  1 ) ) )
9897adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  -> 
( lastS  `  p )  =  ( p `  ( N  -  1 ) ) )
99 lsw 12564 . . . . . . . . . . . . . . . 16  |-  ( u  e. Word  V  ->  ( lastS  `  u )  =  ( u `  ( (
# `  u )  -  1 ) ) )
10099adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  -> 
( lastS  `  u )  =  ( u `  (
( # `  u )  -  1 ) ) )
101 oveq1 6302 . . . . . . . . . . . . . . . . . . 19  |-  ( N  =  ( # `  u
)  ->  ( N  -  1 )  =  ( ( # `  u
)  -  1 ) )
102101eqcoms 2479 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  u )  =  N  ->  ( N  -  1 )  =  ( ( # `  u
)  -  1 ) )
103102fveq2d 5876 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  u )  =  N  ->  ( u `
 ( N  - 
1 ) )  =  ( u `  (
( # `  u )  -  1 ) ) )
104103eqeq2d 2481 . . . . . . . . . . . . . . . 16  |-  ( (
# `  u )  =  N  ->  ( ( lastS  `  u )  =  ( u `  ( N  -  1 ) )  <-> 
( lastS  `  u )  =  ( u `  (
( # `  u )  -  1 ) ) ) )
105104adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  -> 
( ( lastS  `  u
)  =  ( u `
 ( N  - 
1 ) )  <->  ( lastS  `  u
)  =  ( u `
 ( ( # `  u )  -  1 ) ) ) )
106100, 105mpbird 232 . . . . . . . . . . . . . 14  |-  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  -> 
( lastS  `  u )  =  ( u `  ( N  -  1 ) ) )
107106adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( u  e. Word  V  /\  ( # `  u
)  =  N )  /\  ( ( u `
 0 )  =  X  /\  ( u `
 ( N  - 
2 ) )  =  ( u `  0
) ) )  -> 
( lastS  `  u )  =  ( u `  ( N  -  1 ) ) )
10898, 107eqeqan12d 2490 . . . . . . . . . . . 12  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u
)  =  N )  /\  ( ( u `
 0 )  =  X  /\  ( u `
 ( N  - 
2 ) )  =  ( u `  0
) ) ) )  ->  ( ( lastS  `  p
)  =  ( lastS  `  u
)  <->  ( p `  ( N  -  1
) )  =  ( u `  ( N  -  1 ) ) ) )
109108adantl 466 . . . . . . . . . . 11  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( ( ( p  e. Word  V  /\  ( # `
 p )  =  N )  /\  (
( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )  ->  ( ( lastS  `  p
)  =  ( lastS  `  u
)  <->  ( p `  ( N  -  1
) )  =  ( u `  ( N  -  1 ) ) ) )
11093, 109anbi12d 710 . . . . . . . . . 10  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( ( ( p  e. Word  V  /\  ( # `
 p )  =  N )  /\  (
( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )  ->  ( ( ( p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
u substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  ( lastS  `  p )  =  ( lastS  `  u ) )  <->  ( (
p substr  <. 0 ,  ( N  -  2 )
>. )  =  (
u substr  <. 0 ,  ( N  -  2 )
>. )  /\  (
p `  ( N  -  1 ) )  =  ( u `  ( N  -  1
) ) ) ) )
11159, 87, 1103bitr2d 281 . . . . . . . . 9  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( ( ( p  e. Word  V  /\  ( # `
 p )  =  N )  /\  (
( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )  ->  ( ( ( p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
u substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  (
p `  ( ( # `
 p )  - 
2 ) )  =  ( u `  (
( # `  p )  -  2 ) )  /\  ( lastS  `  p
)  =  ( lastS  `  u
) )  <->  ( (
p substr  <. 0 ,  ( N  -  2 )
>. )  =  (
u substr  <. 0 ,  ( N  -  2 )
>. )  /\  (
p `  ( N  -  1 ) )  =  ( u `  ( N  -  1
) ) ) ) )
11247, 57, 1113bitr2d 281 . . . . . . . 8  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( ( ( p  e. Word  V  /\  ( # `
 p )  =  N )  /\  (
( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u )  =  N )  /\  ( ( u ` 
0 )  =  X  /\  ( u `  ( N  -  2
) )  =  ( u `  0 ) ) ) ) )  ->  ( p  =  u  <->  ( ( p substr  <. 0 ,  ( N  -  2 ) >.
)  =  ( u substr  <. 0 ,  ( N  -  2 ) >.
)  /\  ( p `  ( N  -  1 ) )  =  ( u `  ( N  -  1 ) ) ) ) )
113112exbiri 622 . . . . . . 7  |-  ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( u  e. Word  V  /\  ( # `  u
)  =  N )  /\  ( ( u `
 0 )  =  X  /\  ( u `
 ( N  - 
2 ) )  =  ( u `  0
) ) ) )  ->  ( ( ( p substr  <. 0 ,  ( N  -  2 )
>. )  =  (
u substr  <. 0 ,  ( N  -  2 )
>. )  /\  (
p `  ( N  -  1 ) )  =  ( u `  ( N  -  1
) ) )  ->  p  =  u )
) )
11418, 20, 113syl2and 483 . . . . . 6  |-  ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
p  e.  ( X G N )  /\  u  e.  ( X G N ) )  -> 
( ( ( p substr  <. 0 ,  ( N  -  2 ) >.
)  =  ( u substr  <. 0 ,  ( N  -  2 ) >.
)  /\  ( p `  ( N  -  1 ) )  =  ( u `  ( N  -  1 ) ) )  ->  p  =  u ) ) )
115114imp 429 . . . . 5  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( p  e.  ( X G N )  /\  u  e.  ( X G N ) ) )  ->  ( ( ( p substr  <. 0 ,  ( N  -  2 )
>. )  =  (
u substr  <. 0 ,  ( N  -  2 )
>. )  /\  (
p `  ( N  -  1 ) )  =  ( u `  ( N  -  1
) ) )  ->  p  =  u )
)
11615, 115syl5bi 217 . . . 4  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( p  e.  ( X G N )  /\  u  e.  ( X G N ) ) )  ->  ( <. (
p substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( p `
 ( N  - 
1 ) ) >.  =  <. ( u substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( u `  ( N  -  1
) ) >.  ->  p  =  u ) )
11712, 116sylbid 215 . . 3  |-  ( ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  /\  ( p  e.  ( X G N )  /\  u  e.  ( X G N ) ) )  ->  ( ( T `
 p )  =  ( T `  u
)  ->  p  =  u ) )
118117ralrimivva 2888 . 2  |-  ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  A. p  e.  ( X G N ) A. u  e.  ( X G N ) ( ( T `
 p )  =  ( T `  u
)  ->  p  =  u ) )
119 dff13 6165 . 2  |-  ( T : ( X G N ) -1-1-> ( ( X F ( N  -  2 ) )  X.  ( <. V ,  E >. Neighbors  X ) )  <->  ( T : ( X G N ) --> ( ( X F ( N  -  2 ) )  X.  ( <. V ,  E >. Neighbors  X ) )  /\  A. p  e.  ( X G N ) A. u  e.  ( X G N ) ( ( T `  p )  =  ( T `  u )  ->  p  =  u ) ) )
1205, 118, 119sylanbrc 664 1  |-  ( ( V USGrph  E  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  T :
( X G N ) -1-1-> ( ( X F ( N  - 
2 ) )  X.  ( <. V ,  E >. Neighbors  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817   {crab 2821   <.cop 4039   class class class wbr 4453    |-> cmpt 4511    X. cxp 5003   -->wf 5590   -1-1->wf1 5591   ` cfv 5594  (class class class)co 6295    |-> cmpt2 6297   RRcr 9503   0cc0 9504   1c1 9505    < clt 9640    <_ cle 9641    - cmin 9817   2c2 10597   3c3 10598   NN0cn0 10807   ZZcz 10876   ZZ>=cuz 11094   #chash 12385  Word cword 12514   lastS clsw 12515   substr csubstr 12518   USGrph cusg 24162   Neighbors cnbgra 24249   ClWWalksN cclwwlkn 24581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-fz 11685  df-fzo 11805  df-hash 12386  df-word 12522  df-lsw 12523  df-concat 12524  df-s1 12525  df-substr 12526  df-s2 12792  df-usgra 24165  df-nbgra 24252  df-clwwlk 24583  df-clwwlkn 24584
This theorem is referenced by:  numclwlk1lem2f1o  24928
  Copyright terms: Public domain W3C validator