MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numaddc Structured version   Unicode version

Theorem numaddc 11002
Description: Add two decimal integers  M and  N (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1  |-  T  e. 
NN0
numma.2  |-  A  e. 
NN0
numma.3  |-  B  e. 
NN0
numma.4  |-  C  e. 
NN0
numma.5  |-  D  e. 
NN0
numma.6  |-  M  =  ( ( T  x.  A )  +  B
)
numma.7  |-  N  =  ( ( T  x.  C )  +  D
)
numaddc.8  |-  F  e. 
NN0
numaddc.9  |-  ( ( A  +  C )  +  1 )  =  E
numaddc.10  |-  ( B  +  D )  =  ( ( T  x.  1 )  +  F
)
Assertion
Ref Expression
numaddc  |-  ( M  +  N )  =  ( ( T  x.  E )  +  F
)

Proof of Theorem numaddc
StepHypRef Expression
1 numma.6 . . . . . 6  |-  M  =  ( ( T  x.  A )  +  B
)
2 numma.1 . . . . . . 7  |-  T  e. 
NN0
3 numma.2 . . . . . . 7  |-  A  e. 
NN0
4 numma.3 . . . . . . 7  |-  B  e. 
NN0
52, 3, 4numcl 10978 . . . . . 6  |-  ( ( T  x.  A )  +  B )  e. 
NN0
61, 5eqeltri 2546 . . . . 5  |-  M  e. 
NN0
76nn0cni 10798 . . . 4  |-  M  e.  CC
87mulid1i 9589 . . 3  |-  ( M  x.  1 )  =  M
98oveq1i 6287 . 2  |-  ( ( M  x.  1 )  +  N )  =  ( M  +  N
)
10 numma.4 . . 3  |-  C  e. 
NN0
11 numma.5 . . 3  |-  D  e. 
NN0
12 numma.7 . . 3  |-  N  =  ( ( T  x.  C )  +  D
)
13 1nn0 10802 . . 3  |-  1  e.  NN0
14 numaddc.8 . . 3  |-  F  e. 
NN0
153nn0cni 10798 . . . . . 6  |-  A  e.  CC
1615mulid1i 9589 . . . . 5  |-  ( A  x.  1 )  =  A
1716oveq1i 6287 . . . 4  |-  ( ( A  x.  1 )  +  ( C  + 
1 ) )  =  ( A  +  ( C  +  1 ) )
1810nn0cni 10798 . . . . 5  |-  C  e.  CC
19 ax-1cn 9541 . . . . 5  |-  1  e.  CC
2015, 18, 19addassi 9595 . . . 4  |-  ( ( A  +  C )  +  1 )  =  ( A  +  ( C  +  1 ) )
21 numaddc.9 . . . 4  |-  ( ( A  +  C )  +  1 )  =  E
2217, 20, 213eqtr2i 2497 . . 3  |-  ( ( A  x.  1 )  +  ( C  + 
1 ) )  =  E
234nn0cni 10798 . . . . . 6  |-  B  e.  CC
2423mulid1i 9589 . . . . 5  |-  ( B  x.  1 )  =  B
2524oveq1i 6287 . . . 4  |-  ( ( B  x.  1 )  +  D )  =  ( B  +  D
)
26 numaddc.10 . . . 4  |-  ( B  +  D )  =  ( ( T  x.  1 )  +  F
)
2725, 26eqtri 2491 . . 3  |-  ( ( B  x.  1 )  +  D )  =  ( ( T  x.  1 )  +  F
)
282, 3, 4, 10, 11, 1, 12, 13, 14, 13, 22, 27nummac 10999 . 2  |-  ( ( M  x.  1 )  +  N )  =  ( ( T  x.  E )  +  F
)
299, 28eqtr3i 2493 1  |-  ( M  +  N )  =  ( ( T  x.  E )  +  F
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1374    e. wcel 1762  (class class class)co 6277   1c1 9484    + caddc 9486    x. cmul 9488   NN0cn0 10786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-ltxr 9624  df-sub 9798  df-nn 10528  df-n0 10787
This theorem is referenced by:  decaddc  11009
  Copyright terms: Public domain W3C validator