MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nulmbl2 Structured version   Unicode version

Theorem nulmbl2 22364
Description: A set of outer measure zero is measurable. The term "outer measure zero" here is slightly different from "nullset/negligible set"; a nullset has  vol* ( A )  =  0 while "outer measure zero" means that for any  x there is a  y containing  A with volume less than  x. Assuming AC, these notions are equivalent (because the intersection of all such  y is a nullset) but in ZF this is a strictly weaker notion. Proposition 563Gb of [Fremlin5] p. 193. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
nulmbl2  |-  ( A. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol* `  y )  <_  x )  ->  A  e.  dom  vol )
Distinct variable group:    x, y, A

Proof of Theorem nulmbl2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 1rp 11295 . . . . 5  |-  1  e.  RR+
21ne0ii 3765 . . . 4  |-  RR+  =/=  (/)
3 r19.2z 3883 . . . 4  |-  ( (
RR+  =/=  (/)  /\  A. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol* `  y )  <_  x ) )  ->  E. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol* `  y
)  <_  x )
)
42, 3mpan 674 . . 3  |-  ( A. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol* `  y )  <_  x )  ->  E. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol* `  y )  <_  x ) )
5 simprl 762 . . . . . 6  |-  ( ( y  e.  dom  vol  /\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) )  ->  A  C_  y )
6 mblss 22359 . . . . . . 7  |-  ( y  e.  dom  vol  ->  y 
C_  RR )
76adantr 466 . . . . . 6  |-  ( ( y  e.  dom  vol  /\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) )  ->  y  C_  RR )
85, 7sstrd 3471 . . . . 5  |-  ( ( y  e.  dom  vol  /\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) )  ->  A  C_  RR )
98rexlimiva 2911 . . . 4  |-  ( E. y  e.  dom  vol ( A  C_  y  /\  ( vol* `  y
)  <_  x )  ->  A  C_  RR )
109rexlimivw 2912 . . 3  |-  ( E. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol* `  y )  <_  x )  ->  A  C_  RR )
114, 10syl 17 . 2  |-  ( A. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol* `  y )  <_  x )  ->  A  C_  RR )
12 inss1 3679 . . . . . . . . . . . . 13  |-  ( z  i^i  A )  C_  z
1312a1i 11 . . . . . . . . . . . 12  |-  ( ( z  e.  ~P RR  /\  ( vol* `  z )  e.  RR )  ->  ( z  i^i 
A )  C_  z
)
14 elpwi 3985 . . . . . . . . . . . . 13  |-  ( z  e.  ~P RR  ->  z 
C_  RR )
1514adantr 466 . . . . . . . . . . . 12  |-  ( ( z  e.  ~P RR  /\  ( vol* `  z )  e.  RR )  ->  z  C_  RR )
16 simpr 462 . . . . . . . . . . . 12  |-  ( ( z  e.  ~P RR  /\  ( vol* `  z )  e.  RR )  ->  ( vol* `  z )  e.  RR )
17 ovolsscl 22313 . . . . . . . . . . . 12  |-  ( ( ( z  i^i  A
)  C_  z  /\  z  C_  RR  /\  ( vol* `  z )  e.  RR )  -> 
( vol* `  ( z  i^i  A
) )  e.  RR )
1813, 15, 16, 17syl3anc 1264 . . . . . . . . . . 11  |-  ( ( z  e.  ~P RR  /\  ( vol* `  z )  e.  RR )  ->  ( vol* `  ( z  i^i  A
) )  e.  RR )
19 difssd 3590 . . . . . . . . . . . 12  |-  ( ( z  e.  ~P RR  /\  ( vol* `  z )  e.  RR )  ->  ( z  \  A )  C_  z
)
20 ovolsscl 22313 . . . . . . . . . . . 12  |-  ( ( ( z  \  A
)  C_  z  /\  z  C_  RR  /\  ( vol* `  z )  e.  RR )  -> 
( vol* `  ( z  \  A
) )  e.  RR )
2119, 15, 16, 20syl3anc 1264 . . . . . . . . . . 11  |-  ( ( z  e.  ~P RR  /\  ( vol* `  z )  e.  RR )  ->  ( vol* `  ( z  \  A
) )  e.  RR )
2218, 21readdcld 9659 . . . . . . . . . 10  |-  ( ( z  e.  ~P RR  /\  ( vol* `  z )  e.  RR )  ->  ( ( vol* `  ( z  i^i  A ) )  +  ( vol* `  ( z  \  A
) ) )  e.  RR )
2322ad2antrr 730 . . . . . . . . 9  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( ( vol* `  ( z  i^i  A
) )  +  ( vol* `  (
z  \  A )
) )  e.  RR )
2416ad2antrr 730 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  z )  e.  RR )
25 difssd 3590 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( y  \  A
)  C_  y )
267adantl 467 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
y  C_  RR )
27 rpre 11297 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  x  e.  RR )
2827ad2antlr 731 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  ->  x  e.  RR )
29 simprrr 773 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  y )  <_  x
)
30 ovollecl 22310 . . . . . . . . . . . 12  |-  ( ( y  C_  RR  /\  x  e.  RR  /\  ( vol* `  y )  <_  x )  ->  ( vol* `  y )  e.  RR )
3126, 28, 29, 30syl3anc 1264 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  y )  e.  RR )
32 ovolsscl 22313 . . . . . . . . . . 11  |-  ( ( ( y  \  A
)  C_  y  /\  y  C_  RR  /\  ( vol* `  y )  e.  RR )  -> 
( vol* `  ( y  \  A
) )  e.  RR )
3325, 26, 31, 32syl3anc 1264 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  ( y  \  A
) )  e.  RR )
3424, 33readdcld 9659 . . . . . . . . 9  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( ( vol* `  z )  +  ( vol* `  (
y  \  A )
) )  e.  RR )
3524, 28readdcld 9659 . . . . . . . . 9  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( ( vol* `  z )  +  x
)  e.  RR )
3618ad2antrr 730 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  ( z  i^i  A
) )  e.  RR )
3721ad2antrr 730 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  ( z  \  A
) )  e.  RR )
38 inss1 3679 . . . . . . . . . . . . 13  |-  ( z  i^i  y )  C_  z
3938a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( z  i^i  y
)  C_  z )
4015ad2antrr 730 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
z  C_  RR )
41 ovolsscl 22313 . . . . . . . . . . . 12  |-  ( ( ( z  i^i  y
)  C_  z  /\  z  C_  RR  /\  ( vol* `  z )  e.  RR )  -> 
( vol* `  ( z  i^i  y
) )  e.  RR )
4239, 40, 24, 41syl3anc 1264 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  ( z  i^i  y
) )  e.  RR )
43 difssd 3590 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( z  \  y
)  C_  z )
44 ovolsscl 22313 . . . . . . . . . . . . 13  |-  ( ( ( z  \  y
)  C_  z  /\  z  C_  RR  /\  ( vol* `  z )  e.  RR )  -> 
( vol* `  ( z  \  y
) )  e.  RR )
4543, 40, 24, 44syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  ( z  \  y
) )  e.  RR )
4645, 33readdcld 9659 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( ( vol* `  ( z  \  y
) )  +  ( vol* `  (
y  \  A )
) )  e.  RR )
47 simprrl 772 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  ->  A  C_  y )
48 sslin 3685 . . . . . . . . . . . . 13  |-  ( A 
C_  y  ->  (
z  i^i  A )  C_  ( z  i^i  y
) )
4947, 48syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( z  i^i  A
)  C_  ( z  i^i  y ) )
5038, 40syl5ss 3472 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( z  i^i  y
)  C_  RR )
51 ovolss 22312 . . . . . . . . . . . 12  |-  ( ( ( z  i^i  A
)  C_  ( z  i^i  y )  /\  (
z  i^i  y )  C_  RR )  ->  ( vol* `  ( z  i^i  A ) )  <_  ( vol* `  ( z  i^i  y
) ) )
5249, 50, 51syl2anc 665 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  ( z  i^i  A
) )  <_  ( vol* `  ( z  i^i  y ) ) )
5340ssdifssd 3600 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( z  \  y
)  C_  RR )
5426ssdifssd 3600 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( y  \  A
)  C_  RR )
5553, 54unssd 3639 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( ( z  \ 
y )  u.  (
y  \  A )
)  C_  RR )
56 ovolun 22326 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  \ 
y )  C_  RR  /\  ( vol* `  ( z  \  y
) )  e.  RR )  /\  ( ( y 
\  A )  C_  RR  /\  ( vol* `  ( y  \  A
) )  e.  RR ) )  ->  ( vol* `  ( ( z  \  y )  u.  ( y  \  A ) ) )  <_  ( ( vol* `  ( z  \  y ) )  +  ( vol* `  ( y  \  A
) ) ) )
5753, 45, 54, 33, 56syl22anc 1265 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  ( ( z  \ 
y )  u.  (
y  \  A )
) )  <_  (
( vol* `  ( z  \  y
) )  +  ( vol* `  (
y  \  A )
) ) )
58 ovollecl 22310 . . . . . . . . . . . . 13  |-  ( ( ( ( z  \ 
y )  u.  (
y  \  A )
)  C_  RR  /\  (
( vol* `  ( z  \  y
) )  +  ( vol* `  (
y  \  A )
) )  e.  RR  /\  ( vol* `  ( ( z  \ 
y )  u.  (
y  \  A )
) )  <_  (
( vol* `  ( z  \  y
) )  +  ( vol* `  (
y  \  A )
) ) )  -> 
( vol* `  ( ( z  \ 
y )  u.  (
y  \  A )
) )  e.  RR )
5955, 46, 57, 58syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  ( ( z  \ 
y )  u.  (
y  \  A )
) )  e.  RR )
60 ssun1 3626 . . . . . . . . . . . . . . . . 17  |-  z  C_  ( z  u.  y
)
61 undif1 3867 . . . . . . . . . . . . . . . . 17  |-  ( ( z  \  y )  u.  y )  =  ( z  u.  y
)
6260, 61sseqtr4i 3494 . . . . . . . . . . . . . . . 16  |-  z  C_  ( ( z  \ 
y )  u.  y
)
63 ssdif 3597 . . . . . . . . . . . . . . . 16  |-  ( z 
C_  ( ( z 
\  y )  u.  y )  ->  (
z  \  A )  C_  ( ( ( z 
\  y )  u.  y )  \  A
) )
6462, 63ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( z 
\  A )  C_  ( ( ( z 
\  y )  u.  y )  \  A
)
65 difundir 3723 . . . . . . . . . . . . . . 15  |-  ( ( ( z  \  y
)  u.  y ) 
\  A )  =  ( ( ( z 
\  y )  \  A )  u.  (
y  \  A )
)
6664, 65sseqtri 3493 . . . . . . . . . . . . . 14  |-  ( z 
\  A )  C_  ( ( ( z 
\  y )  \  A )  u.  (
y  \  A )
)
67 difun1 3730 . . . . . . . . . . . . . . . 16  |-  ( z 
\  ( y  u.  A ) )  =  ( ( z  \ 
y )  \  A
)
68 ssequn2 3636 . . . . . . . . . . . . . . . . . 18  |-  ( A 
C_  y  <->  ( y  u.  A )  =  y )
6947, 68sylib 199 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( y  u.  A
)  =  y )
7069difeq2d 3580 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( z  \  (
y  u.  A ) )  =  ( z 
\  y ) )
7167, 70syl5eqr 2475 . . . . . . . . . . . . . . 15  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( ( z  \ 
y )  \  A
)  =  ( z 
\  y ) )
7271uneq1d 3616 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( ( ( z 
\  y )  \  A )  u.  (
y  \  A )
)  =  ( ( z  \  y )  u.  ( y  \  A ) ) )
7366, 72syl5sseq 3509 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( z  \  A
)  C_  ( (
z  \  y )  u.  ( y  \  A
) ) )
74 ovolss 22312 . . . . . . . . . . . . 13  |-  ( ( ( z  \  A
)  C_  ( (
z  \  y )  u.  ( y  \  A
) )  /\  (
( z  \  y
)  u.  ( y 
\  A ) ) 
C_  RR )  -> 
( vol* `  ( z  \  A
) )  <_  ( vol* `  ( ( z  \  y )  u.  ( y  \  A ) ) ) )
7573, 55, 74syl2anc 665 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  ( z  \  A
) )  <_  ( vol* `  ( ( z  \  y )  u.  ( y  \  A ) ) ) )
7637, 59, 46, 75, 57letrd 9781 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  ( z  \  A
) )  <_  (
( vol* `  ( z  \  y
) )  +  ( vol* `  (
y  \  A )
) ) )
7736, 37, 42, 46, 52, 76le2addd 10221 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( ( vol* `  ( z  i^i  A
) )  +  ( vol* `  (
z  \  A )
) )  <_  (
( vol* `  ( z  i^i  y
) )  +  ( ( vol* `  ( z  \  y
) )  +  ( vol* `  (
y  \  A )
) ) ) )
78 simprl 762 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
y  e.  dom  vol )
79 mblsplit 22360 . . . . . . . . . . . . 13  |-  ( ( y  e.  dom  vol  /\  z  C_  RR  /\  ( vol* `  z )  e.  RR )  -> 
( vol* `  z )  =  ( ( vol* `  ( z  i^i  y
) )  +  ( vol* `  (
z  \  y )
) ) )
8078, 40, 24, 79syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  z )  =  ( ( vol* `  ( z  i^i  y
) )  +  ( vol* `  (
z  \  y )
) ) )
8180oveq1d 6311 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( ( vol* `  z )  +  ( vol* `  (
y  \  A )
) )  =  ( ( ( vol* `  ( z  i^i  y
) )  +  ( vol* `  (
z  \  y )
) )  +  ( vol* `  (
y  \  A )
) ) )
8242recnd 9658 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  ( z  i^i  y
) )  e.  CC )
8345recnd 9658 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  ( z  \  y
) )  e.  CC )
8433recnd 9658 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  ( y  \  A
) )  e.  CC )
8582, 83, 84addassd 9654 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( ( ( vol* `  ( z  i^i  y ) )  +  ( vol* `  ( z  \  y
) ) )  +  ( vol* `  ( y  \  A
) ) )  =  ( ( vol* `  ( z  i^i  y
) )  +  ( ( vol* `  ( z  \  y
) )  +  ( vol* `  (
y  \  A )
) ) ) )
8681, 85eqtrd 2461 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( ( vol* `  z )  +  ( vol* `  (
y  \  A )
) )  =  ( ( vol* `  ( z  i^i  y
) )  +  ( ( vol* `  ( z  \  y
) )  +  ( vol* `  (
y  \  A )
) ) ) )
8777, 86breqtrrd 4443 . . . . . . . . 9  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( ( vol* `  ( z  i^i  A
) )  +  ( vol* `  (
z  \  A )
) )  <_  (
( vol* `  z )  +  ( vol* `  (
y  \  A )
) ) )
88 difss 3589 . . . . . . . . . . . 12  |-  ( y 
\  A )  C_  y
89 ovolss 22312 . . . . . . . . . . . 12  |-  ( ( ( y  \  A
)  C_  y  /\  y  C_  RR )  -> 
( vol* `  ( y  \  A
) )  <_  ( vol* `  y ) )
9088, 26, 89sylancr 667 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  ( y  \  A
) )  <_  ( vol* `  y ) )
9133, 31, 28, 90, 29letrd 9781 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( vol* `  ( y  \  A
) )  <_  x
)
9233, 28, 24, 91leadd2dd 10217 . . . . . . . . 9  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( ( vol* `  z )  +  ( vol* `  (
y  \  A )
) )  <_  (
( vol* `  z )  +  x
) )
9323, 34, 35, 87, 92letrd 9781 . . . . . . . 8  |-  ( ( ( ( z  e. 
~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  /\  ( y  e.  dom  vol 
/\  ( A  C_  y  /\  ( vol* `  y )  <_  x
) ) )  -> 
( ( vol* `  ( z  i^i  A
) )  +  ( vol* `  (
z  \  A )
) )  <_  (
( vol* `  z )  +  x
) )
9493rexlimdvaa 2916 . . . . . . 7  |-  ( ( ( z  e.  ~P RR  /\  ( vol* `  z )  e.  RR )  /\  x  e.  RR+ )  ->  ( E. y  e.  dom  vol ( A 
C_  y  /\  ( vol* `  y )  <_  x )  -> 
( ( vol* `  ( z  i^i  A
) )  +  ( vol* `  (
z  \  A )
) )  <_  (
( vol* `  z )  +  x
) ) )
9594ralimdva 2831 . . . . . 6  |-  ( ( z  e.  ~P RR  /\  ( vol* `  z )  e.  RR )  ->  ( A. x  e.  RR+  E. y  e. 
dom  vol ( A  C_  y  /\  ( vol* `  y )  <_  x
)  ->  A. x  e.  RR+  ( ( vol* `  ( z  i^i  A ) )  +  ( vol* `  ( z  \  A
) ) )  <_ 
( ( vol* `  z )  +  x
) ) )
9695impcom 431 . . . . 5  |-  ( ( A. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol* `  y
)  <_  x )  /\  ( z  e.  ~P RR  /\  ( vol* `  z )  e.  RR ) )  ->  A. x  e.  RR+  ( ( vol* `  ( z  i^i  A ) )  +  ( vol* `  ( z  \  A
) ) )  <_ 
( ( vol* `  z )  +  x
) )
9722adantl 467 . . . . . . 7  |-  ( ( A. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol* `  y
)  <_  x )  /\  ( z  e.  ~P RR  /\  ( vol* `  z )  e.  RR ) )  ->  (
( vol* `  ( z  i^i  A
) )  +  ( vol* `  (
z  \  A )
) )  e.  RR )
9897rexrd 9679 . . . . . 6  |-  ( ( A. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol* `  y
)  <_  x )  /\  ( z  e.  ~P RR  /\  ( vol* `  z )  e.  RR ) )  ->  (
( vol* `  ( z  i^i  A
) )  +  ( vol* `  (
z  \  A )
) )  e.  RR* )
99 simprr 764 . . . . . 6  |-  ( ( A. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol* `  y
)  <_  x )  /\  ( z  e.  ~P RR  /\  ( vol* `  z )  e.  RR ) )  ->  ( vol* `  z )  e.  RR )
100 xralrple 11487 . . . . . 6  |-  ( ( ( ( vol* `  ( z  i^i  A
) )  +  ( vol* `  (
z  \  A )
) )  e.  RR*  /\  ( vol* `  z )  e.  RR )  ->  ( ( ( vol* `  (
z  i^i  A )
)  +  ( vol* `  ( z  \  A ) ) )  <_  ( vol* `  z )  <->  A. x  e.  RR+  ( ( vol* `  ( z  i^i  A ) )  +  ( vol* `  ( z  \  A
) ) )  <_ 
( ( vol* `  z )  +  x
) ) )
10198, 99, 100syl2anc 665 . . . . 5  |-  ( ( A. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol* `  y
)  <_  x )  /\  ( z  e.  ~P RR  /\  ( vol* `  z )  e.  RR ) )  ->  (
( ( vol* `  ( z  i^i  A
) )  +  ( vol* `  (
z  \  A )
) )  <_  ( vol* `  z )  <->  A. x  e.  RR+  (
( vol* `  ( z  i^i  A
) )  +  ( vol* `  (
z  \  A )
) )  <_  (
( vol* `  z )  +  x
) ) )
10296, 101mpbird 235 . . . 4  |-  ( ( A. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol* `  y
)  <_  x )  /\  ( z  e.  ~P RR  /\  ( vol* `  z )  e.  RR ) )  ->  (
( vol* `  ( z  i^i  A
) )  +  ( vol* `  (
z  \  A )
) )  <_  ( vol* `  z ) )
103102expr 618 . . 3  |-  ( ( A. x  e.  RR+  E. y  e.  dom  vol ( A  C_  y  /\  ( vol* `  y
)  <_  x )  /\  z  e.  ~P RR )  ->  ( ( vol* `  z
)  e.  RR  ->  ( ( vol* `  ( z  i^i  A
) )  +  ( vol* `  (
z  \  A )
) )  <_  ( vol* `  z ) ) )
104103ralrimiva 2837 . 2  |-  ( A. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol* `  y )  <_  x )  ->  A. z  e.  ~P  RR ( ( vol* `  z )  e.  RR  ->  ( ( vol* `  ( z  i^i  A
) )  +  ( vol* `  (
z  \  A )
) )  <_  ( vol* `  z ) ) )
105 ismbl2 22355 . 2  |-  ( A  e.  dom  vol  <->  ( A  C_  RR  /\  A. z  e.  ~P  RR ( ( vol* `  z
)  e.  RR  ->  ( ( vol* `  ( z  i^i  A
) )  +  ( vol* `  (
z  \  A )
) )  <_  ( vol* `  z ) ) ) )
10611, 104, 105sylanbrc 668 1  |-  ( A. x  e.  RR+  E. y  e.  dom  vol ( A 
C_  y  /\  ( vol* `  y )  <_  x )  ->  A  e.  dom  vol )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1867    =/= wne 2616   A.wral 2773   E.wrex 2774    \ cdif 3430    u. cun 3431    i^i cin 3432    C_ wss 3433   (/)c0 3758   ~Pcpw 3976   class class class wbr 4417   dom cdm 4845   ` cfv 5592  (class class class)co 6296   RRcr 9527   1c1 9529    + caddc 9531   RR*cxr 9663    <_ cle 9665   RR+crp 11291   vol*covol 22287   volcvol 22289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-pre-sup 9606
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-er 7362  df-map 7473  df-en 7569  df-dom 7570  df-sdom 7571  df-sup 7953  df-inf 7954  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-div 10259  df-nn 10599  df-2 10657  df-3 10658  df-n0 10859  df-z 10927  df-uz 11149  df-q 11254  df-rp 11292  df-ioo 11628  df-ico 11630  df-icc 11631  df-fz 11772  df-fl 12014  df-seq 12200  df-exp 12259  df-cj 13130  df-re 13131  df-im 13132  df-sqrt 13266  df-abs 13267  df-ovol 22290  df-vol 22292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator