MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntropn Structured version   Unicode version

Theorem ntropn 19676
Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntropn  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  e.  J )

Proof of Theorem ntropn
StepHypRef Expression
1 clscld.1 . . 3  |-  X  = 
U. J
21ntrval 19663 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
3 inss1 3714 . . . 4  |-  ( J  i^i  ~P S ) 
C_  J
4 uniopn 19532 . . . 4  |-  ( ( J  e.  Top  /\  ( J  i^i  ~P S
)  C_  J )  ->  U. ( J  i^i  ~P S )  e.  J
)
53, 4mpan2 671 . . 3  |-  ( J  e.  Top  ->  U. ( J  i^i  ~P S )  e.  J )
65adantr 465 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  U. ( J  i^i  ~P S )  e.  J
)
72, 6eqeltrd 2545 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  e.  J )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    i^i cin 3470    C_ wss 3471   ~Pcpw 4015   U.cuni 4251   ` cfv 5594   Topctop 19520   intcnt 19644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-top 19525  df-ntr 19647
This theorem is referenced by:  ntrval2  19678  ntrss3  19687  ntrin  19688  cmclsopn  19689  isopn3  19693  ntridm  19695  neiint  19731  topssnei  19751  maxlp  19774  restntr  19809  iscnp4  19890  cnntri  19898  cnprest  19916  llycmpkgen2  20176  xkococnlem  20285  flimopn  20601  fclsneii  20643  fcfnei  20661  subgntr  20730  iccntr  21451  rectbntr0  21462  bcthlem5  21892  bcth3  21895  limcflf  22410  perfdvf  22432  ubthlem1  25912  cvmlift2lem12  28934  opnregcld  30310
  Copyright terms: Public domain W3C validator