MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntridm Structured version   Unicode version

Theorem ntridm 19442
Description: The interior operation is idempotent. (Contributed by NM, 2-Oct-2007.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntridm  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  ( ( int `  J ) `  S ) )  =  ( ( int `  J
) `  S )
)

Proof of Theorem ntridm
StepHypRef Expression
1 clscld.1 . . 3  |-  X  = 
U. J
21ntropn 19423 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  e.  J )
31ntrss3 19434 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  C_  X )
41isopn3 19440 . . 3  |-  ( ( J  e.  Top  /\  ( ( int `  J
) `  S )  C_  X )  ->  (
( ( int `  J
) `  S )  e.  J  <->  ( ( int `  J ) `  (
( int `  J
) `  S )
)  =  ( ( int `  J ) `
 S ) ) )
53, 4syldan 470 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( ( int `  J ) `  S
)  e.  J  <->  ( ( int `  J ) `  ( ( int `  J
) `  S )
)  =  ( ( int `  J ) `
 S ) ) )
62, 5mpbid 210 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  ( ( int `  J ) `  S ) )  =  ( ( int `  J
) `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    C_ wss 3461   U.cuni 4234   ` cfv 5578   Topctop 19267   intcnt 19391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-top 19272  df-ntr 19394
This theorem is referenced by:  dvmptntr  22247  cldregopn  30124  dvresntr  31617
  Copyright terms: Public domain W3C validator