MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntreq0 Structured version   Visualization version   Unicode version

Theorem ntreq0 20170
Description: Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntreq0  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( ( int `  J ) `  S
)  =  (/)  <->  A. x  e.  J  ( x  C_  S  ->  x  =  (/) ) ) )
Distinct variable groups:    x, J    x, S    x, X

Proof of Theorem ntreq0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 clscld.1 . . . 4  |-  X  = 
U. J
21ntrval 20128 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
32eqeq1d 2473 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( ( int `  J ) `  S
)  =  (/)  <->  U. ( J  i^i  ~P S )  =  (/) ) )
4 neq0 3733 . . . . 5  |-  ( -. 
U. ( J  i^i  ~P S )  =  (/)  <->  E. y  y  e.  U. ( J  i^i  ~P S ) )
54con1bii 338 . . . 4  |-  ( -. 
E. y  y  e. 
U. ( J  i^i  ~P S )  <->  U. ( J  i^i  ~P S )  =  (/) )
6 ancom 457 . . . . . . . . . 10  |-  ( ( y  e.  x  /\  x  e.  ( J  i^i  ~P S ) )  <-> 
( x  e.  ( J  i^i  ~P S
)  /\  y  e.  x ) )
7 elin 3608 . . . . . . . . . . 11  |-  ( x  e.  ( J  i^i  ~P S )  <->  ( x  e.  J  /\  x  e.  ~P S ) )
87anbi1i 709 . . . . . . . . . 10  |-  ( ( x  e.  ( J  i^i  ~P S )  /\  y  e.  x
)  <->  ( ( x  e.  J  /\  x  e.  ~P S )  /\  y  e.  x )
)
9 anass 661 . . . . . . . . . 10  |-  ( ( ( x  e.  J  /\  x  e.  ~P S )  /\  y  e.  x )  <->  ( x  e.  J  /\  (
x  e.  ~P S  /\  y  e.  x
) ) )
106, 8, 93bitri 279 . . . . . . . . 9  |-  ( ( y  e.  x  /\  x  e.  ( J  i^i  ~P S ) )  <-> 
( x  e.  J  /\  ( x  e.  ~P S  /\  y  e.  x
) ) )
1110exbii 1726 . . . . . . . 8  |-  ( E. x ( y  e.  x  /\  x  e.  ( J  i^i  ~P S ) )  <->  E. x
( x  e.  J  /\  ( x  e.  ~P S  /\  y  e.  x
) ) )
12 eluni 4193 . . . . . . . 8  |-  ( y  e.  U. ( J  i^i  ~P S )  <->  E. x ( y  e.  x  /\  x  e.  ( J  i^i  ~P S ) ) )
13 df-rex 2762 . . . . . . . 8  |-  ( E. x  e.  J  ( x  e.  ~P S  /\  y  e.  x
)  <->  E. x ( x  e.  J  /\  (
x  e.  ~P S  /\  y  e.  x
) ) )
1411, 12, 133bitr4i 285 . . . . . . 7  |-  ( y  e.  U. ( J  i^i  ~P S )  <->  E. x  e.  J  ( x  e.  ~P S  /\  y  e.  x
) )
1514exbii 1726 . . . . . 6  |-  ( E. y  y  e.  U. ( J  i^i  ~P S
)  <->  E. y E. x  e.  J  ( x  e.  ~P S  /\  y  e.  x ) )
16 rexcom4 3053 . . . . . 6  |-  ( E. x  e.  J  E. y ( x  e. 
~P S  /\  y  e.  x )  <->  E. y E. x  e.  J  ( x  e.  ~P S  /\  y  e.  x
) )
17 19.42v 1842 . . . . . . 7  |-  ( E. y ( x  e. 
~P S  /\  y  e.  x )  <->  ( x  e.  ~P S  /\  E. y  y  e.  x
) )
1817rexbii 2881 . . . . . 6  |-  ( E. x  e.  J  E. y ( x  e. 
~P S  /\  y  e.  x )  <->  E. x  e.  J  ( x  e.  ~P S  /\  E. y  y  e.  x
) )
1915, 16, 183bitr2i 281 . . . . 5  |-  ( E. y  y  e.  U. ( J  i^i  ~P S
)  <->  E. x  e.  J  ( x  e.  ~P S  /\  E. y  y  e.  x ) )
2019notbii 303 . . . 4  |-  ( -. 
E. y  y  e. 
U. ( J  i^i  ~P S )  <->  -.  E. x  e.  J  ( x  e.  ~P S  /\  E. y  y  e.  x
) )
215, 20bitr3i 259 . . 3  |-  ( U. ( J  i^i  ~P S
)  =  (/)  <->  -.  E. x  e.  J  ( x  e.  ~P S  /\  E. y  y  e.  x
) )
22 ralinexa 2838 . . 3  |-  ( A. x  e.  J  (
x  e.  ~P S  ->  -.  E. y  y  e.  x )  <->  -.  E. x  e.  J  ( x  e.  ~P S  /\  E. y  y  e.  x
) )
23 selpw 3949 . . . . 5  |-  ( x  e.  ~P S  <->  x  C_  S
)
24 neq0 3733 . . . . . 6  |-  ( -.  x  =  (/)  <->  E. y 
y  e.  x )
2524con1bii 338 . . . . 5  |-  ( -. 
E. y  y  e.  x  <->  x  =  (/) )
2623, 25imbi12i 333 . . . 4  |-  ( ( x  e.  ~P S  ->  -.  E. y  y  e.  x )  <->  ( x  C_  S  ->  x  =  (/) ) )
2726ralbii 2823 . . 3  |-  ( A. x  e.  J  (
x  e.  ~P S  ->  -.  E. y  y  e.  x )  <->  A. x  e.  J  ( x  C_  S  ->  x  =  (/) ) )
2821, 22, 273bitr2i 281 . 2  |-  ( U. ( J  i^i  ~P S
)  =  (/)  <->  A. x  e.  J  ( x  C_  S  ->  x  =  (/) ) )
293, 28syl6bb 269 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( ( int `  J ) `  S
)  =  (/)  <->  A. x  e.  J  ( x  C_  S  ->  x  =  (/) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   A.wral 2756   E.wrex 2757    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   U.cuni 4190   ` cfv 5589   Topctop 19994   intcnt 20109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-top 19998  df-ntr 20112
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator