MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrcls0 Structured version   Visualization version   Unicode version

Theorem ntrcls0 20104
Description: A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntrcls0  |-  ( ( J  e.  Top  /\  S  C_  X  /\  (
( int `  J
) `  ( ( cls `  J ) `  S ) )  =  (/) )  ->  ( ( int `  J ) `
 S )  =  (/) )

Proof of Theorem ntrcls0
StepHypRef Expression
1 simpl 459 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  J  e.  Top )
2 clscld.1 . . . . . 6  |-  X  = 
U. J
32clsss3 20086 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  C_  X )
42sscls 20083 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )
52ntrss 20082 . . . . 5  |-  ( ( J  e.  Top  /\  ( ( cls `  J
) `  S )  C_  X  /\  S  C_  ( ( cls `  J
) `  S )
)  ->  ( ( int `  J ) `  S )  C_  (
( int `  J
) `  ( ( cls `  J ) `  S ) ) )
61, 3, 4, 5syl3anc 1269 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  C_  ( ( int `  J
) `  ( ( cls `  J ) `  S ) ) )
763adant3 1029 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  (
( int `  J
) `  ( ( cls `  J ) `  S ) )  =  (/) )  ->  ( ( int `  J ) `
 S )  C_  ( ( int `  J
) `  ( ( cls `  J ) `  S ) ) )
8 sseq2 3456 . . . 4  |-  ( ( ( int `  J
) `  ( ( cls `  J ) `  S ) )  =  (/)  ->  ( ( ( int `  J ) `
 S )  C_  ( ( int `  J
) `  ( ( cls `  J ) `  S ) )  <->  ( ( int `  J ) `  S )  C_  (/) ) )
983ad2ant3 1032 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  (
( int `  J
) `  ( ( cls `  J ) `  S ) )  =  (/) )  ->  ( ( ( int `  J
) `  S )  C_  ( ( int `  J
) `  ( ( cls `  J ) `  S ) )  <->  ( ( int `  J ) `  S )  C_  (/) ) )
107, 9mpbid 214 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  (
( int `  J
) `  ( ( cls `  J ) `  S ) )  =  (/) )  ->  ( ( int `  J ) `
 S )  C_  (/) )
11 ss0 3767 . 2  |-  ( ( ( int `  J
) `  S )  C_  (/)  ->  ( ( int `  J ) `  S
)  =  (/) )
1210, 11syl 17 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  (
( int `  J
) `  ( ( cls `  J ) `  S ) )  =  (/) )  ->  ( ( int `  J ) `
 S )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889    C_ wss 3406   (/)c0 3733   U.cuni 4201   ` cfv 5585   Topctop 19929   intcnt 20044   clsccl 20045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-reu 2746  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-iin 4284  df-br 4406  df-opab 4465  df-mpt 4466  df-id 4752  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-top 19933  df-cld 20046  df-ntr 20047  df-cls 20048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator