MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nthruc Unicode version

Theorem nthruc 12805
Description: The sequence  NN,  ZZ,  QQ,  RR, and  CC forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to  ZZ but not  NN, one-half belongs to  QQ but not  ZZ, the square root of 2 belongs to  RR but not  QQ, and finally that the imaginary number  _i belongs to  CC but not  RR. See nthruz 12806 for a further refinement. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
nthruc  |-  ( ( NN  C.  ZZ  /\  ZZ  C.  QQ )  /\  ( QQ  C.  RR  /\  RR  C.  CC ) )

Proof of Theorem nthruc
StepHypRef Expression
1 nnssz 10257 . . . 4  |-  NN  C_  ZZ
2 0z 10249 . . . . 5  |-  0  e.  ZZ
3 0nnn 9987 . . . . 5  |-  -.  0  e.  NN
42, 3pm3.2i 442 . . . 4  |-  ( 0  e.  ZZ  /\  -.  0  e.  NN )
5 ssnelpss 3651 . . . 4  |-  ( NN  C_  ZZ  ->  ( (
0  e.  ZZ  /\  -.  0  e.  NN )  ->  NN  C.  ZZ ) )
61, 4, 5mp2 9 . . 3  |-  NN  C.  ZZ
7 zssq 10537 . . . 4  |-  ZZ  C_  QQ
8 1z 10267 . . . . . 6  |-  1  e.  ZZ
9 2nn 10089 . . . . . 6  |-  2  e.  NN
10 znq 10534 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  2  e.  NN )  ->  ( 1  /  2
)  e.  QQ )
118, 9, 10mp2an 654 . . . . 5  |-  ( 1  /  2 )  e.  QQ
12 halfnz 10304 . . . . 5  |-  -.  (
1  /  2 )  e.  ZZ
1311, 12pm3.2i 442 . . . 4  |-  ( ( 1  /  2 )  e.  QQ  /\  -.  ( 1  /  2
)  e.  ZZ )
14 ssnelpss 3651 . . . 4  |-  ( ZZ  C_  QQ  ->  ( (
( 1  /  2
)  e.  QQ  /\  -.  ( 1  /  2
)  e.  ZZ )  ->  ZZ  C.  QQ ) )
157, 13, 14mp2 9 . . 3  |-  ZZ  C.  QQ
166, 15pm3.2i 442 . 2  |-  ( NN 
C.  ZZ  /\  ZZ  C.  QQ )
17 qssre 10540 . . . 4  |-  QQ  C_  RR
18 sqr2re 12804 . . . . 5  |-  ( sqr `  2 )  e.  RR
19 sqr2irr 12803 . . . . . 6  |-  ( sqr `  2 )  e/  QQ
20 df-nel 2570 . . . . . 6  |-  ( ( sqr `  2 )  e/  QQ  <->  -.  ( sqr `  2 )  e.  QQ )
2119, 20mpbi 200 . . . . 5  |-  -.  ( sqr `  2 )  e.  QQ
2218, 21pm3.2i 442 . . . 4  |-  ( ( sqr `  2 )  e.  RR  /\  -.  ( sqr `  2 )  e.  QQ )
23 ssnelpss 3651 . . . 4  |-  ( QQ  C_  RR  ->  ( (
( sqr `  2
)  e.  RR  /\  -.  ( sqr `  2
)  e.  QQ )  ->  QQ  C.  RR ) )
2417, 22, 23mp2 9 . . 3  |-  QQ  C.  RR
25 ax-resscn 9003 . . . 4  |-  RR  C_  CC
26 ax-icn 9005 . . . . 5  |-  _i  e.  CC
27 inelr 9946 . . . . 5  |-  -.  _i  e.  RR
2826, 27pm3.2i 442 . . . 4  |-  ( _i  e.  CC  /\  -.  _i  e.  RR )
29 ssnelpss 3651 . . . 4  |-  ( RR  C_  CC  ->  ( (
_i  e.  CC  /\  -.  _i  e.  RR )  ->  RR  C.  CC ) )
3025, 28, 29mp2 9 . . 3  |-  RR  C.  CC
3124, 30pm3.2i 442 . 2  |-  ( QQ 
C.  RR  /\  RR  C.  CC )
3216, 31pm3.2i 442 1  |-  ( ( NN  C.  ZZ  /\  ZZ  C.  QQ )  /\  ( QQ  C.  RR  /\  RR  C.  CC ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 359    e. wcel 1721    e/ wnel 2568    C_ wss 3280    C. wpss 3281   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947   _ici 8948    / cdiv 9633   NNcn 9956   2c2 10005   ZZcz 10238   QQcq 10530   sqrcsqr 11993
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996
  Copyright terms: Public domain W3C validator