MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsyl4 Structured version   Visualization version   Unicode version

Theorem nsyl4 149
Description: A negated syllogism inference. (Contributed by NM, 15-Feb-1996.)
Hypotheses
Ref Expression
nsyl4.1  |-  ( ph  ->  ps )
nsyl4.2  |-  ( -. 
ph  ->  ch )
Assertion
Ref Expression
nsyl4  |-  ( -. 
ch  ->  ps )

Proof of Theorem nsyl4
StepHypRef Expression
1 nsyl4.2 . . 3  |-  ( -. 
ph  ->  ch )
21con1i 134 . 2  |-  ( -. 
ch  ->  ph )
3 nsyl4.1 . 2  |-  ( ph  ->  ps )
42, 3syl 17 1  |-  ( -. 
ch  ->  ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm5.55  913  axc7  1949  moanim  2368  moexex  2380  nfunsn  5918  mptrcl  5977  card2on  8094  carden2a  8425  wwlknfi  25514  bj-naecomsv  31394  ax10  32511  axc5c711  32533  axc5c711to11  32536  naecoms-o  32542  axc5c4c711  36795  axc5c4c711to11  36799  afvco2  38715
  Copyright terms: Public domain W3C validator