MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nssinpss Structured version   Unicode version

Theorem nssinpss 3603
Description: Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
nssinpss  |-  ( -.  A  C_  B  <->  ( A  i^i  B )  C.  A
)

Proof of Theorem nssinpss
StepHypRef Expression
1 inss1 3591 . . 3  |-  ( A  i^i  B )  C_  A
21biantrur 506 . 2  |-  ( ( A  i^i  B )  =/=  A  <->  ( ( A  i^i  B )  C_  A  /\  ( A  i^i  B )  =/=  A ) )
3 df-ss 3363 . . 3  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
43necon3bbii 2633 . 2  |-  ( -.  A  C_  B  <->  ( A  i^i  B )  =/=  A
)
5 df-pss 3365 . 2  |-  ( ( A  i^i  B ) 
C.  A  <->  ( ( A  i^i  B )  C_  A  /\  ( A  i^i  B )  =/=  A ) )
62, 4, 53bitr4i 277 1  |-  ( -.  A  C_  B  <->  ( A  i^i  B )  C.  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    /\ wa 369    =/= wne 2620    i^i cin 3348    C_ wss 3349    C. wpss 3350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-v 2995  df-in 3356  df-ss 3363  df-pss 3365
This theorem is referenced by:  fbfinnfr  19436  chrelat2i  25791
  Copyright terms: Public domain W3C validator