MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nss Structured version   Unicode version

Theorem nss 3523
Description: Negation of subclass relationship. Exercise 13 of [TakeutiZaring] p. 18. (Contributed by NM, 25-Feb-1996.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
nss  |-  ( -.  A  C_  B  <->  E. x
( x  e.  A  /\  -.  x  e.  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nss
StepHypRef Expression
1 exanali 1638 . . 3  |-  ( E. x ( x  e.  A  /\  -.  x  e.  B )  <->  -.  A. x
( x  e.  A  ->  x  e.  B ) )
2 dfss2 3454 . . 3  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
31, 2xchbinxr 311 . 2  |-  ( E. x ( x  e.  A  /\  -.  x  e.  B )  <->  -.  A  C_  B )
43bicomi 202 1  |-  ( -.  A  C_  B  <->  E. x
( x  e.  A  /\  -.  x  e.  B
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1368   E.wex 1587    e. wcel 1758    C_ wss 3437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-in 3444  df-ss 3451
This theorem is referenced by:  grur1  9099  psslinpr  9312  reclem2pr  9329  mreexexlem2d  14703  prmcyg  16492  filcon  19589  alexsubALTlem4  19755  wilthlem2  22541  shne0i  25004  erdszelem10  27233  fundmpss  27722
  Copyright terms: Public domain W3C validator