MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgconj Structured version   Unicode version

Theorem nsgconj 16022
Description: The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
isnsg3.1  |-  X  =  ( Base `  G
)
isnsg3.2  |-  .+  =  ( +g  `  G )
isnsg3.3  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
nsgconj  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( ( A  .+  B )  .-  A )  e.  S
)

Proof of Theorem nsgconj
StepHypRef Expression
1 nsgsubg 16021 . . . . 5  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
213ad2ant1 1012 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  S  e.  (SubGrp `  G ) )
3 subgrcl 15994 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
42, 3syl 16 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  G  e.  Grp )
5 simp2 992 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  A  e.  X )
6 isnsg3.1 . . . . . 6  |-  X  =  ( Base `  G
)
76subgss 15990 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
82, 7syl 16 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  S  C_  X
)
9 simp3 993 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  B  e.  S )
108, 9sseldd 3498 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  B  e.  X )
11 isnsg3.2 . . . 4  |-  .+  =  ( +g  `  G )
12 isnsg3.3 . . . 4  |-  .-  =  ( -g `  G )
136, 11, 12grpaddsubass 15922 . . 3  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  B  e.  X  /\  A  e.  X
) )  ->  (
( A  .+  B
)  .-  A )  =  ( A  .+  ( B  .-  A ) ) )
144, 5, 10, 5, 13syl13anc 1225 . 2  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( ( A  .+  B )  .-  A )  =  ( A  .+  ( B 
.-  A ) ) )
156, 11, 12grpnpcan 15924 . . . . 5  |-  ( ( G  e.  Grp  /\  B  e.  X  /\  A  e.  X )  ->  ( ( B  .-  A )  .+  A
)  =  B )
164, 10, 5, 15syl3anc 1223 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( ( B  .-  A )  .+  A )  =  B )
1716, 9eqeltrd 2548 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( ( B  .-  A )  .+  A )  e.  S
)
18 simp1 991 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  S  e.  (NrmSGrp `  G ) )
196, 12grpsubcl 15912 . . . . 5  |-  ( ( G  e.  Grp  /\  B  e.  X  /\  A  e.  X )  ->  ( B  .-  A
)  e.  X )
204, 10, 5, 19syl3anc 1223 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( B  .-  A )  e.  X
)
216, 11nsgbi 16020 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( B  .-  A )  e.  X  /\  A  e.  X
)  ->  ( (
( B  .-  A
)  .+  A )  e.  S  <->  ( A  .+  ( B  .-  A ) )  e.  S ) )
2218, 20, 5, 21syl3anc 1223 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( (
( B  .-  A
)  .+  A )  e.  S  <->  ( A  .+  ( B  .-  A ) )  e.  S ) )
2317, 22mpbid 210 . 2  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( A  .+  ( B  .-  A
) )  e.  S
)
2414, 23eqeltrd 2548 1  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( ( A  .+  B )  .-  A )  e.  S
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 968    = wceq 1374    e. wcel 1762    C_ wss 3469   ` cfv 5579  (class class class)co 6275   Basecbs 14479   +g cplusg 14544   Grpcgrp 15716   -gcsg 15719  SubGrpcsubg 15983  NrmSGrpcnsg 15984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-0g 14686  df-mnd 15721  df-grp 15851  df-minusg 15852  df-sbg 15853  df-subg 15986  df-nsg 15987
This theorem is referenced by:  isnsg3  16023  ghmnsgima  16078  ghmnsgpreima  16079  clsnsg  20336
  Copyright terms: Public domain W3C validator