MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgacs Structured version   Unicode version

Theorem nsgacs 16042
Description: Normal subgroups form an algebraic closure system. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypothesis
Ref Expression
subgacs.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
nsgacs  |-  ( G  e.  Grp  ->  (NrmSGrp `  G )  e.  (ACS
`  B ) )

Proof of Theorem nsgacs
Dummy variables  s  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgacs.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
21subgss 16007 . . . . . . . 8  |-  ( s  e.  (SubGrp `  G
)  ->  s  C_  B )
3 selpw 4017 . . . . . . . 8  |-  ( s  e.  ~P B  <->  s  C_  B )
42, 3sylibr 212 . . . . . . 7  |-  ( s  e.  (SubGrp `  G
)  ->  s  e.  ~P B )
5 eleq2 2540 . . . . . . . . . 10  |-  ( z  =  s  ->  (
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z  <->  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  s ) )
65raleqbi1dv 3066 . . . . . . . . 9  |-  ( z  =  s  ->  ( A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z  <->  A. y  e.  s  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  s ) )
76ralbidv 2903 . . . . . . . 8  |-  ( z  =  s  ->  ( A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z  <->  A. x  e.  B  A. y  e.  s  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  s ) )
87elrab3 3262 . . . . . . 7  |-  ( s  e.  ~P B  -> 
( s  e.  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z }  <->  A. x  e.  B  A. y  e.  s  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  s ) )
94, 8syl 16 . . . . . 6  |-  ( s  e.  (SubGrp `  G
)  ->  ( s  e.  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  z }  <->  A. x  e.  B  A. y  e.  s 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  s ) )
109bicomd 201 . . . . 5  |-  ( s  e.  (SubGrp `  G
)  ->  ( A. x  e.  B  A. y  e.  s  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  s  <->  s  e.  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z } ) )
1110pm5.32i 637 . . . 4  |-  ( ( s  e.  (SubGrp `  G )  /\  A. x  e.  B  A. y  e.  s  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  s )  <->  ( s  e.  (SubGrp `  G )  /\  s  e.  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z } ) )
12 eqid 2467 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
13 eqid 2467 . . . . 5  |-  ( -g `  G )  =  (
-g `  G )
141, 12, 13isnsg3 16040 . . . 4  |-  ( s  e.  (NrmSGrp `  G
)  <->  ( s  e.  (SubGrp `  G )  /\  A. x  e.  B  A. y  e.  s 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  s ) )
15 elin 3687 . . . 4  |-  ( s  e.  ( (SubGrp `  G )  i^i  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z } )  <-> 
( s  e.  (SubGrp `  G )  /\  s  e.  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  z } ) )
1611, 14, 153bitr4i 277 . . 3  |-  ( s  e.  (NrmSGrp `  G
)  <->  s  e.  ( (SubGrp `  G )  i^i  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  z } ) )
1716eqriv 2463 . 2  |-  (NrmSGrp `  G
)  =  ( (SubGrp `  G )  i^i  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z } )
18 fvex 5876 . . . . 5  |-  ( Base `  G )  e.  _V
191, 18eqeltri 2551 . . . 4  |-  B  e. 
_V
20 mreacs 14913 . . . 4  |-  ( B  e.  _V  ->  (ACS `  B )  e.  (Moore `  ~P B ) )
2119, 20mp1i 12 . . 3  |-  ( G  e.  Grp  ->  (ACS `  B )  e.  (Moore `  ~P B ) )
221subgacs 16041 . . 3  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  B ) )
23 simpl 457 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  G  e.  Grp )
241, 12grpcl 15873 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
25243expb 1197 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
26 simprl 755 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  x  e.  B )
271, 13grpsubcl 15928 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x ( +g  `  G ) y )  e.  B  /\  x  e.  B )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  B )
2823, 25, 26, 27syl3anc 1228 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  B )
2928ralrimivva 2885 . . . 4  |-  ( G  e.  Grp  ->  A. x  e.  B  A. y  e.  B  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  B
)
30 acsfn1c 14917 . . . 4  |-  ( ( B  e.  _V  /\  A. x  e.  B  A. y  e.  B  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  B )  ->  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z }  e.  (ACS `  B ) )
3119, 29, 30sylancr 663 . . 3  |-  ( G  e.  Grp  ->  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z }  e.  (ACS `  B ) )
32 mreincl 14854 . . 3  |-  ( ( (ACS `  B )  e.  (Moore `  ~P B )  /\  (SubGrp `  G
)  e.  (ACS `  B )  /\  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z }  e.  (ACS `  B ) )  ->  ( (SubGrp `  G )  i^i  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z } )  e.  (ACS `  B
) )
3321, 22, 31, 32syl3anc 1228 . 2  |-  ( G  e.  Grp  ->  (
(SubGrp `  G )  i^i  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  z } )  e.  (ACS
`  B ) )
3417, 33syl5eqel 2559 1  |-  ( G  e.  Grp  ->  (NrmSGrp `  G )  e.  (ACS
`  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818   _Vcvv 3113    i^i cin 3475    C_ wss 3476   ~Pcpw 4010   ` cfv 5588  (class class class)co 6284   Basecbs 14490   +g cplusg 14555  Moorecmre 14837  ACScacs 14840   Grpcgrp 15727   -gcsg 15730  SubGrpcsubg 16000  NrmSGrpcnsg 16001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-0g 14697  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-grp 15867  df-minusg 15868  df-sbg 15869  df-subg 16003  df-nsg 16004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator