MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgacs Structured version   Unicode version

Theorem nsgacs 15708
Description: Normal subgroups form an algebraic closure system. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypothesis
Ref Expression
subgacs.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
nsgacs  |-  ( G  e.  Grp  ->  (NrmSGrp `  G )  e.  (ACS
`  B ) )

Proof of Theorem nsgacs
Dummy variables  s  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgacs.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
21subgss 15673 . . . . . . . 8  |-  ( s  e.  (SubGrp `  G
)  ->  s  C_  B )
3 selpw 3862 . . . . . . . 8  |-  ( s  e.  ~P B  <->  s  C_  B )
42, 3sylibr 212 . . . . . . 7  |-  ( s  e.  (SubGrp `  G
)  ->  s  e.  ~P B )
5 eleq2 2499 . . . . . . . . . 10  |-  ( z  =  s  ->  (
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z  <->  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  s ) )
65raleqbi1dv 2920 . . . . . . . . 9  |-  ( z  =  s  ->  ( A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z  <->  A. y  e.  s  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  s ) )
76ralbidv 2730 . . . . . . . 8  |-  ( z  =  s  ->  ( A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z  <->  A. x  e.  B  A. y  e.  s  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  s ) )
87elrab3 3113 . . . . . . 7  |-  ( s  e.  ~P B  -> 
( s  e.  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z }  <->  A. x  e.  B  A. y  e.  s  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  s ) )
94, 8syl 16 . . . . . 6  |-  ( s  e.  (SubGrp `  G
)  ->  ( s  e.  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  z }  <->  A. x  e.  B  A. y  e.  s 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  s ) )
109bicomd 201 . . . . 5  |-  ( s  e.  (SubGrp `  G
)  ->  ( A. x  e.  B  A. y  e.  s  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  s  <->  s  e.  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z } ) )
1110pm5.32i 637 . . . 4  |-  ( ( s  e.  (SubGrp `  G )  /\  A. x  e.  B  A. y  e.  s  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  s )  <->  ( s  e.  (SubGrp `  G )  /\  s  e.  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z } ) )
12 eqid 2438 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
13 eqid 2438 . . . . 5  |-  ( -g `  G )  =  (
-g `  G )
141, 12, 13isnsg3 15706 . . . 4  |-  ( s  e.  (NrmSGrp `  G
)  <->  ( s  e.  (SubGrp `  G )  /\  A. x  e.  B  A. y  e.  s 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  s ) )
15 elin 3534 . . . 4  |-  ( s  e.  ( (SubGrp `  G )  i^i  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z } )  <-> 
( s  e.  (SubGrp `  G )  /\  s  e.  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  z } ) )
1611, 14, 153bitr4i 277 . . 3  |-  ( s  e.  (NrmSGrp `  G
)  <->  s  e.  ( (SubGrp `  G )  i^i  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  z } ) )
1716eqriv 2435 . 2  |-  (NrmSGrp `  G
)  =  ( (SubGrp `  G )  i^i  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z } )
18 fvex 5696 . . . . 5  |-  ( Base `  G )  e.  _V
191, 18eqeltri 2508 . . . 4  |-  B  e. 
_V
20 mreacs 14588 . . . 4  |-  ( B  e.  _V  ->  (ACS `  B )  e.  (Moore `  ~P B ) )
2119, 20mp1i 12 . . 3  |-  ( G  e.  Grp  ->  (ACS `  B )  e.  (Moore `  ~P B ) )
221subgacs 15707 . . 3  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  B ) )
23 simpl 457 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  G  e.  Grp )
241, 12grpcl 15542 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
25243expb 1188 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
26 simprl 755 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  x  e.  B )
271, 13grpsubcl 15597 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x ( +g  `  G ) y )  e.  B  /\  x  e.  B )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  B )
2823, 25, 26, 27syl3anc 1218 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  B )
2928ralrimivva 2803 . . . 4  |-  ( G  e.  Grp  ->  A. x  e.  B  A. y  e.  B  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  B
)
30 acsfn1c 14592 . . . 4  |-  ( ( B  e.  _V  /\  A. x  e.  B  A. y  e.  B  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  B )  ->  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z }  e.  (ACS `  B ) )
3119, 29, 30sylancr 663 . . 3  |-  ( G  e.  Grp  ->  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z }  e.  (ACS `  B ) )
32 mreincl 14529 . . 3  |-  ( ( (ACS `  B )  e.  (Moore `  ~P B )  /\  (SubGrp `  G
)  e.  (ACS `  B )  /\  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z }  e.  (ACS `  B ) )  ->  ( (SubGrp `  G )  i^i  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z } )  e.  (ACS `  B
) )
3321, 22, 31, 32syl3anc 1218 . 2  |-  ( G  e.  Grp  ->  (
(SubGrp `  G )  i^i  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  z } )  e.  (ACS
`  B ) )
3417, 33syl5eqel 2522 1  |-  ( G  e.  Grp  ->  (NrmSGrp `  G )  e.  (ACS
`  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   {crab 2714   _Vcvv 2967    i^i cin 3322    C_ wss 3323   ~Pcpw 3855   ` cfv 5413  (class class class)co 6086   Basecbs 14166   +g cplusg 14230  Moorecmre 14512  ACScacs 14515   Grpcgrp 15402   -gcsg 15405  SubGrpcsubg 15666  NrmSGrpcnsg 15667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-0g 14372  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-grp 15536  df-minusg 15537  df-sbg 15538  df-subg 15669  df-nsg 15670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator