MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep3 Structured version   Visualization version   Unicode version

Theorem nrmsep3 20371
Description: In a normal space, given a closed set  B inside an open set  A, there is an open set  x such that  B  C_  x  C_  cls ( x )  C_  A. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
nrmsep3  |-  ( ( J  e.  Nrm  /\  ( A  e.  J  /\  B  e.  ( Clsd `  J )  /\  B  C_  A ) )  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) )
Distinct variable groups:    x, A    x, B    x, J

Proof of Theorem nrmsep3
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnrm 20351 . . . . . 6  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. y  e.  J  A. z  e.  ( ( Clsd `  J
)  i^i  ~P y
) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J ) `  x
)  C_  y )
) )
21simprbi 466 . . . . 5  |-  ( J  e.  Nrm  ->  A. y  e.  J  A. z  e.  ( ( Clsd `  J
)  i^i  ~P y
) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J ) `  x
)  C_  y )
)
3 pweq 3954 . . . . . . . 8  |-  ( y  =  A  ->  ~P y  =  ~P A
)
43ineq2d 3634 . . . . . . 7  |-  ( y  =  A  ->  (
( Clsd `  J )  i^i  ~P y )  =  ( ( Clsd `  J
)  i^i  ~P A
) )
5 sseq2 3454 . . . . . . . . 9  |-  ( y  =  A  ->  (
( ( cls `  J
) `  x )  C_  y  <->  ( ( cls `  J ) `  x
)  C_  A )
)
65anbi2d 710 . . . . . . . 8  |-  ( y  =  A  ->  (
( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  y )  <->  ( z  C_  x  /\  ( ( cls `  J ) `
 x )  C_  A ) ) )
76rexbidv 2901 . . . . . . 7  |-  ( y  =  A  ->  ( E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  y )  <->  E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J ) `
 x )  C_  A ) ) )
84, 7raleqbidv 3001 . . . . . 6  |-  ( y  =  A  ->  ( A. z  e.  (
( Clsd `  J )  i^i  ~P y ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  y )  <->  A. z  e.  ( ( Clsd `  J
)  i^i  ~P A
) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J ) `  x
)  C_  A )
) )
98rspccv 3147 . . . . 5  |-  ( A. y  e.  J  A. z  e.  ( ( Clsd `  J )  i^i 
~P y ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  y )  ->  ( A  e.  J  ->  A. z  e.  ( (
Clsd `  J )  i^i  ~P A ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) ) )
102, 9syl 17 . . . 4  |-  ( J  e.  Nrm  ->  ( A  e.  J  ->  A. z  e.  ( (
Clsd `  J )  i^i  ~P A ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) ) )
11 elin 3617 . . . . . 6  |-  ( B  e.  ( ( Clsd `  J )  i^i  ~P A )  <->  ( B  e.  ( Clsd `  J
)  /\  B  e.  ~P A ) )
12 elpwg 3959 . . . . . . 7  |-  ( B  e.  ( Clsd `  J
)  ->  ( B  e.  ~P A  <->  B  C_  A
) )
1312pm5.32i 643 . . . . . 6  |-  ( ( B  e.  ( Clsd `  J )  /\  B  e.  ~P A )  <->  ( B  e.  ( Clsd `  J
)  /\  B  C_  A
) )
1411, 13bitri 253 . . . . 5  |-  ( B  e.  ( ( Clsd `  J )  i^i  ~P A )  <->  ( B  e.  ( Clsd `  J
)  /\  B  C_  A
) )
15 sseq1 3453 . . . . . . . 8  |-  ( z  =  B  ->  (
z  C_  x  <->  B  C_  x
) )
1615anbi1d 711 . . . . . . 7  |-  ( z  =  B  ->  (
( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A )  <->  ( B  C_  x  /\  ( ( cls `  J ) `
 x )  C_  A ) ) )
1716rexbidv 2901 . . . . . 6  |-  ( z  =  B  ->  ( E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A )  <->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J ) `
 x )  C_  A ) ) )
1817rspccv 3147 . . . . 5  |-  ( A. z  e.  ( ( Clsd `  J )  i^i 
~P A ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A )  ->  ( B  e.  ( ( Clsd `  J )  i^i 
~P A )  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) ) )
1914, 18syl5bir 222 . . . 4  |-  ( A. z  e.  ( ( Clsd `  J )  i^i 
~P A ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A )  ->  (
( B  e.  (
Clsd `  J )  /\  B  C_  A )  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) ) )
2010, 19syl6 34 . . 3  |-  ( J  e.  Nrm  ->  ( A  e.  J  ->  ( ( B  e.  (
Clsd `  J )  /\  B  C_  A )  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) ) ) )
2120exp4a 611 . 2  |-  ( J  e.  Nrm  ->  ( A  e.  J  ->  ( B  e.  ( Clsd `  J )  ->  ( B  C_  A  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J ) `
 x )  C_  A ) ) ) ) )
22213imp2 1224 1  |-  ( ( J  e.  Nrm  /\  ( A  e.  J  /\  B  e.  ( Clsd `  J )  /\  B  C_  A ) )  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   A.wral 2737   E.wrex 2738    i^i cin 3403    C_ wss 3404   ~Pcpw 3951   ` cfv 5582   Topctop 19917   Clsdccld 20031   clsccl 20033   Nrmcnrm 20326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-iota 5546  df-fv 5590  df-nrm 20333
This theorem is referenced by:  nrmsep2  20372  kqnrmlem1  20758  kqnrmlem2  20759  nrmr0reg  20764  nrmhmph  20809
  Copyright terms: Public domain W3C validator