MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep3 Structured version   Unicode version

Theorem nrmsep3 19983
Description: In a normal space, given a closed set  B inside an open set  A, there is an open set  x such that  B  C_  x  C_  cls ( x )  C_  A. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
nrmsep3  |-  ( ( J  e.  Nrm  /\  ( A  e.  J  /\  B  e.  ( Clsd `  J )  /\  B  C_  A ) )  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) )
Distinct variable groups:    x, A    x, B    x, J

Proof of Theorem nrmsep3
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnrm 19963 . . . . . 6  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. y  e.  J  A. z  e.  ( ( Clsd `  J
)  i^i  ~P y
) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J ) `  x
)  C_  y )
) )
21simprbi 464 . . . . 5  |-  ( J  e.  Nrm  ->  A. y  e.  J  A. z  e.  ( ( Clsd `  J
)  i^i  ~P y
) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J ) `  x
)  C_  y )
)
3 pweq 4018 . . . . . . . 8  |-  ( y  =  A  ->  ~P y  =  ~P A
)
43ineq2d 3696 . . . . . . 7  |-  ( y  =  A  ->  (
( Clsd `  J )  i^i  ~P y )  =  ( ( Clsd `  J
)  i^i  ~P A
) )
5 sseq2 3521 . . . . . . . . 9  |-  ( y  =  A  ->  (
( ( cls `  J
) `  x )  C_  y  <->  ( ( cls `  J ) `  x
)  C_  A )
)
65anbi2d 703 . . . . . . . 8  |-  ( y  =  A  ->  (
( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  y )  <->  ( z  C_  x  /\  ( ( cls `  J ) `
 x )  C_  A ) ) )
76rexbidv 2968 . . . . . . 7  |-  ( y  =  A  ->  ( E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  y )  <->  E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J ) `
 x )  C_  A ) ) )
84, 7raleqbidv 3068 . . . . . 6  |-  ( y  =  A  ->  ( A. z  e.  (
( Clsd `  J )  i^i  ~P y ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  y )  <->  A. z  e.  ( ( Clsd `  J
)  i^i  ~P A
) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J ) `  x
)  C_  A )
) )
98rspccv 3207 . . . . 5  |-  ( A. y  e.  J  A. z  e.  ( ( Clsd `  J )  i^i 
~P y ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  y )  ->  ( A  e.  J  ->  A. z  e.  ( (
Clsd `  J )  i^i  ~P A ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) ) )
102, 9syl 16 . . . 4  |-  ( J  e.  Nrm  ->  ( A  e.  J  ->  A. z  e.  ( (
Clsd `  J )  i^i  ~P A ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) ) )
11 elin 3683 . . . . . 6  |-  ( B  e.  ( ( Clsd `  J )  i^i  ~P A )  <->  ( B  e.  ( Clsd `  J
)  /\  B  e.  ~P A ) )
12 elpwg 4023 . . . . . . 7  |-  ( B  e.  ( Clsd `  J
)  ->  ( B  e.  ~P A  <->  B  C_  A
) )
1312pm5.32i 637 . . . . . 6  |-  ( ( B  e.  ( Clsd `  J )  /\  B  e.  ~P A )  <->  ( B  e.  ( Clsd `  J
)  /\  B  C_  A
) )
1411, 13bitri 249 . . . . 5  |-  ( B  e.  ( ( Clsd `  J )  i^i  ~P A )  <->  ( B  e.  ( Clsd `  J
)  /\  B  C_  A
) )
15 sseq1 3520 . . . . . . . 8  |-  ( z  =  B  ->  (
z  C_  x  <->  B  C_  x
) )
1615anbi1d 704 . . . . . . 7  |-  ( z  =  B  ->  (
( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A )  <->  ( B  C_  x  /\  ( ( cls `  J ) `
 x )  C_  A ) ) )
1716rexbidv 2968 . . . . . 6  |-  ( z  =  B  ->  ( E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A )  <->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J ) `
 x )  C_  A ) ) )
1817rspccv 3207 . . . . 5  |-  ( A. z  e.  ( ( Clsd `  J )  i^i 
~P A ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A )  ->  ( B  e.  ( ( Clsd `  J )  i^i 
~P A )  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) ) )
1914, 18syl5bir 218 . . . 4  |-  ( A. z  e.  ( ( Clsd `  J )  i^i 
~P A ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A )  ->  (
( B  e.  (
Clsd `  J )  /\  B  C_  A )  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) ) )
2010, 19syl6 33 . . 3  |-  ( J  e.  Nrm  ->  ( A  e.  J  ->  ( ( B  e.  (
Clsd `  J )  /\  B  C_  A )  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) ) ) )
2120exp4a 606 . 2  |-  ( J  e.  Nrm  ->  ( A  e.  J  ->  ( B  e.  ( Clsd `  J )  ->  ( B  C_  A  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J ) `
 x )  C_  A ) ) ) ) )
22213imp2 1211 1  |-  ( ( J  e.  Nrm  /\  ( A  e.  J  /\  B  e.  ( Clsd `  J )  /\  B  C_  A ) )  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808    i^i cin 3470    C_ wss 3471   ~Pcpw 4015   ` cfv 5594   Topctop 19521   Clsdccld 19644   clsccl 19646   Nrmcnrm 19938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-iota 5557  df-fv 5602  df-nrm 19945
This theorem is referenced by:  nrmsep2  19984  kqnrmlem1  20370  kqnrmlem2  20371  nrmr0reg  20376  nrmhmph  20421
  Copyright terms: Public domain W3C validator