MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep Structured version   Unicode version

Theorem nrmsep 19077
Description: In a normal space, disjoint closed sets are separated by open sets. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
nrmsep  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  E. x  e.  J  E. y  e.  J  ( C  C_  x  /\  D  C_  y  /\  ( x  i^i  y )  =  (/) ) )
Distinct variable groups:    x, y, C    x, D, y    x, J, y

Proof of Theorem nrmsep
StepHypRef Expression
1 nrmsep2 19076 . 2  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  E. x  e.  J  ( C  C_  x  /\  ( ( ( cls `  J
) `  x )  i^i  D )  =  (/) ) )
2 nrmtop 19056 . . . . . . . 8  |-  ( J  e.  Nrm  ->  J  e.  Top )
32ad2antrr 725 . . . . . . 7  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  J  e.  Top )
4 elssuni 4219 . . . . . . . 8  |-  ( x  e.  J  ->  x  C_ 
U. J )
54ad2antrl 727 . . . . . . 7  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  x  C_  U. J
)
6 eqid 2451 . . . . . . . 8  |-  U. J  =  U. J
76clscld 18767 . . . . . . 7  |-  ( ( J  e.  Top  /\  x  C_  U. J )  ->  ( ( cls `  J ) `  x
)  e.  ( Clsd `  J ) )
83, 5, 7syl2anc 661 . . . . . 6  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  ( ( cls `  J ) `  x
)  e.  ( Clsd `  J ) )
96cldopn 18751 . . . . . 6  |-  ( ( ( cls `  J
) `  x )  e.  ( Clsd `  J
)  ->  ( U. J  \  ( ( cls `  J ) `  x
) )  e.  J
)
108, 9syl 16 . . . . 5  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  ( U. J  \  ( ( cls `  J
) `  x )
)  e.  J )
11 simprrl 763 . . . . 5  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  C  C_  x
)
12 incom 3641 . . . . . . 7  |-  ( D  i^i  ( ( cls `  J ) `  x
) )  =  ( ( ( cls `  J
) `  x )  i^i  D )
13 simprrr 764 . . . . . . 7  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  ( ( ( cls `  J ) `
 x )  i^i 
D )  =  (/) )
1412, 13syl5eq 2504 . . . . . 6  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  ( D  i^i  ( ( cls `  J
) `  x )
)  =  (/) )
15 simplr2 1031 . . . . . . 7  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  D  e.  (
Clsd `  J )
)
166cldss 18749 . . . . . . 7  |-  ( D  e.  ( Clsd `  J
)  ->  D  C_  U. J
)
17 reldisj 3820 . . . . . . 7  |-  ( D 
C_  U. J  ->  (
( D  i^i  (
( cls `  J
) `  x )
)  =  (/)  <->  D  C_  ( U. J  \  (
( cls `  J
) `  x )
) ) )
1815, 16, 173syl 20 . . . . . 6  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  ( ( D  i^i  ( ( cls `  J ) `  x
) )  =  (/)  <->  D  C_  ( U. J  \ 
( ( cls `  J
) `  x )
) ) )
1914, 18mpbid 210 . . . . 5  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  D  C_  ( U. J  \  (
( cls `  J
) `  x )
) )
206sscls 18776 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  C_  U. J )  ->  x  C_  (
( cls `  J
) `  x )
)
213, 5, 20syl2anc 661 . . . . . . 7  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  x  C_  (
( cls `  J
) `  x )
)
22 ssrin 3673 . . . . . . 7  |-  ( x 
C_  ( ( cls `  J ) `  x
)  ->  ( x  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  C_  (
( ( cls `  J
) `  x )  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) ) )
2321, 22syl 16 . . . . . 6  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  ( x  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  C_  (
( ( cls `  J
) `  x )  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) ) )
24 disjdif 3849 . . . . . 6  |-  ( ( ( cls `  J
) `  x )  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  =  (/)
25 sseq0 3767 . . . . . 6  |-  ( ( ( x  i^i  ( U. J  \  (
( cls `  J
) `  x )
) )  C_  (
( ( cls `  J
) `  x )  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  /\  (
( ( cls `  J
) `  x )  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  =  (/) )  ->  ( x  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  =  (/) )
2623, 24, 25sylancl 662 . . . . 5  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  ( x  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  =  (/) )
27 sseq2 3476 . . . . . . 7  |-  ( y  =  ( U. J  \  ( ( cls `  J
) `  x )
)  ->  ( D  C_  y  <->  D  C_  ( U. J  \  ( ( cls `  J ) `  x
) ) ) )
28 ineq2 3644 . . . . . . . 8  |-  ( y  =  ( U. J  \  ( ( cls `  J
) `  x )
)  ->  ( x  i^i  y )  =  ( x  i^i  ( U. J  \  ( ( cls `  J ) `  x
) ) ) )
2928eqeq1d 2453 . . . . . . 7  |-  ( y  =  ( U. J  \  ( ( cls `  J
) `  x )
)  ->  ( (
x  i^i  y )  =  (/)  <->  ( x  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  =  (/) ) )
3027, 293anbi23d 1293 . . . . . 6  |-  ( y  =  ( U. J  \  ( ( cls `  J
) `  x )
)  ->  ( ( C  C_  x  /\  D  C_  y  /\  ( x  i^i  y )  =  (/) )  <->  ( C  C_  x  /\  D  C_  ( U. J  \  (
( cls `  J
) `  x )
)  /\  ( x  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  =  (/) ) ) )
3130rspcev 3169 . . . . 5  |-  ( ( ( U. J  \ 
( ( cls `  J
) `  x )
)  e.  J  /\  ( C  C_  x  /\  D  C_  ( U. J  \  ( ( cls `  J
) `  x )
)  /\  ( x  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  =  (/) ) )  ->  E. y  e.  J  ( C  C_  x  /\  D  C_  y  /\  ( x  i^i  y )  =  (/) ) )
3210, 11, 19, 26, 31syl13anc 1221 . . . 4  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  E. y  e.  J  ( C  C_  x  /\  D  C_  y  /\  (
x  i^i  y )  =  (/) ) )
3332expr 615 . . 3  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  x  e.  J )  ->  ( ( C  C_  x  /\  ( ( ( cls `  J ) `
 x )  i^i 
D )  =  (/) )  ->  E. y  e.  J  ( C  C_  x  /\  D  C_  y  /\  (
x  i^i  y )  =  (/) ) ) )
3433reximdva 2924 . 2  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  ( E. x  e.  J  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) )  ->  E. x  e.  J  E. y  e.  J  ( C  C_  x  /\  D  C_  y  /\  ( x  i^i  y )  =  (/) ) ) )
351, 34mpd 15 1  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  E. x  e.  J  E. y  e.  J  ( C  C_  x  /\  D  C_  y  /\  ( x  i^i  y )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   E.wrex 2796    \ cdif 3423    i^i cin 3425    C_ wss 3426   (/)c0 3735   U.cuni 4189   ` cfv 5516   Topctop 18614   Clsdccld 18736   clsccl 18738   Nrmcnrm 19030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-iin 4272  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-top 18619  df-cld 18739  df-cls 18741  df-nrm 19037
This theorem is referenced by:  isnrm3  19079
  Copyright terms: Public domain W3C validator