MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrginvrcn Structured version   Unicode version

Theorem nrginvrcn 20284
Description: The ring inverse function is continuous in a normed ring. (Note that this is true even in rings which are not division rings.) (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nrginvrcn.x  |-  X  =  ( Base `  R
)
nrginvrcn.u  |-  U  =  (Unit `  R )
nrginvrcn.i  |-  I  =  ( invr `  R
)
nrginvrcn.j  |-  J  =  ( TopOpen `  R )
Assertion
Ref Expression
nrginvrcn  |-  ( R  e. NrmRing  ->  I  e.  ( ( Jt  U )  Cn  ( Jt  U ) ) )

Proof of Theorem nrginvrcn
Dummy variables  s 
r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrgrng 20256 . . . 4  |-  ( R  e. NrmRing  ->  R  e.  Ring )
2 nrginvrcn.u . . . . 5  |-  U  =  (Unit `  R )
3 eqid 2443 . . . . 5  |-  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
)
42, 3unitgrp 16771 . . . 4  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  e.  Grp )
52, 3unitgrpbas 16770 . . . . 5  |-  U  =  ( Base `  (
(mulGrp `  R )s  U
) )
6 nrginvrcn.i . . . . . 6  |-  I  =  ( invr `  R
)
72, 3, 6invrfval 16777 . . . . 5  |-  I  =  ( invg `  ( (mulGrp `  R )s  U
) )
85, 7grpinvf 15594 . . . 4  |-  ( ( (mulGrp `  R )s  U
)  e.  Grp  ->  I : U --> U )
91, 4, 83syl 20 . . 3  |-  ( R  e. NrmRing  ->  I : U --> U )
10 1rp 11007 . . . . . . . 8  |-  1  e.  RR+
11 ne0i 3655 . . . . . . . 8  |-  ( 1  e.  RR+  ->  RR+  =/=  (/) )
1210, 11ax-mp 5 . . . . . . 7  |-  RR+  =/=  (/)
131ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  R  e.  Ring )
14 nrginvrcn.x . . . . . . . . . . . . . . . 16  |-  X  =  ( Base `  R
)
1514, 2unitss 16764 . . . . . . . . . . . . . . 15  |-  U  C_  X
16 simplrl 759 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  x  e.  U )
1715, 16sseldi 3366 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  x  e.  X )
18 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  y  e.  U )
1915, 18sseldi 3366 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  y  e.  X )
20 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( 1r
`  R )  =  ( 1r `  R
)
21 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( 0g
`  R )  =  ( 0g `  R
)
2214, 20, 21rng1eq0 16696 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  x  e.  X  /\  y  e.  X )  ->  (
( 1r `  R
)  =  ( 0g
`  R )  ->  x  =  y )
)
2313, 17, 19, 22syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( ( 1r `  R )  =  ( 0g `  R
)  ->  x  =  y ) )
24 eqid 2443 . . . . . . . . . . . . . . . 16  |-  ( I `
 y )  =  ( I `  y
)
25 nrgngp 20255 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e. NrmRing  ->  R  e. NrmGrp )
26 ngpms 20204 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e. NrmGrp  ->  R  e.  MetSp )
27 msxms 20041 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e.  MetSp  ->  R  e.  *MetSp )
2825, 26, 273syl 20 . . . . . . . . . . . . . . . . . 18  |-  ( R  e. NrmRing  ->  R  e.  *MetSp )
2928ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  R  e.  *MetSp )
309adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  I : U --> U )
3130ffvelrnda 5855 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( I `  y )  e.  U
)
3215, 31sseldi 3366 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( I `  y )  e.  X
)
33 eqid 2443 . . . . . . . . . . . . . . . . . 18  |-  ( dist `  R )  =  (
dist `  R )
3414, 33xmseq0 20051 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  *MetSp  /\  ( I `  y
)  e.  X  /\  ( I `  y
)  e.  X )  ->  ( ( ( I `  y ) ( dist `  R
) ( I `  y ) )  =  0  <->  ( I `  y )  =  ( I `  y ) ) )
3529, 32, 32, 34syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
( I `  y
) ( dist `  R
) ( I `  y ) )  =  0  <->  ( I `  y )  =  ( I `  y ) ) )
3624, 35mpbiri 233 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
I `  y )
( dist `  R )
( I `  y
) )  =  0 )
37 simplrr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  r  e.  RR+ )
3837rpgt0d 11042 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  0  <  r )
3936, 38eqbrtrd 4324 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
I `  y )
( dist `  R )
( I `  y
) )  <  r
)
40 fveq2 5703 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
I `  x )  =  ( I `  y ) )
4140oveq1d 6118 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  =  ( ( I `  y ) ( dist `  R ) ( I `
 y ) ) )
4241breq1d 4314 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( ( I `  x ) ( dist `  R ) ( I `
 y ) )  <  r  <->  ( (
I `  y )
( dist `  R )
( I `  y
) )  <  r
) )
4339, 42syl5ibrcom 222 . . . . . . . . . . . . 13  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( x  =  y  ->  ( ( I `  x ) ( dist `  R
) ( I `  y ) )  < 
r ) )
4423, 43syld 44 . . . . . . . . . . . 12  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( ( 1r `  R )  =  ( 0g `  R
)  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )
4544imp 429 . . . . . . . . . . 11  |-  ( ( ( ( R  e. NrmRing  /\  ( x  e.  U  /\  r  e.  RR+ )
)  /\  y  e.  U )  /\  ( 1r `  R )  =  ( 0g `  R
) )  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r )
4645an32s 802 . . . . . . . . . 10  |-  ( ( ( ( R  e. NrmRing  /\  ( x  e.  U  /\  r  e.  RR+ )
)  /\  ( 1r `  R )  =  ( 0g `  R ) )  /\  y  e.  U )  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r )
4746a1d 25 . . . . . . . . 9  |-  ( ( ( ( R  e. NrmRing  /\  ( x  e.  U  /\  r  e.  RR+ )
)  /\  ( 1r `  R )  =  ( 0g `  R ) )  /\  y  e.  U )  ->  (
( x ( dist `  R ) y )  <  s  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r ) )
4847ralrimiva 2811 . . . . . . . 8  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  A. y  e.  U  ( (
x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )
4948ralrimivw 2812 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  A. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )
50 r19.2z 3781 . . . . . . 7  |-  ( (
RR+  =/=  (/)  /\  A. s  e.  RR+  A. y  e.  U  ( (
x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )  ->  E. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )
5112, 49, 50sylancr 663 . . . . . 6  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  E. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )
52 eqid 2443 . . . . . . 7  |-  ( norm `  R )  =  (
norm `  R )
53 simpll 753 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  R  e. NrmRing )
541ad2antrr 725 . . . . . . . 8  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  R  e.  Ring )
55 simpr 461 . . . . . . . 8  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( 1r `  R )  =/=  ( 0g `  R ) )
5620, 21isnzr 17353 . . . . . . . 8  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  ( 1r `  R
)  =/=  ( 0g
`  R ) ) )
5754, 55, 56sylanbrc 664 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  R  e. NzRing )
58 simplrl 759 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  x  e.  U
)
59 simplrr 760 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  r  e.  RR+ )
60 eqid 2443 . . . . . . 7  |-  ( if ( 1  <_  (
( ( norm `  R
) `  x )  x.  r ) ,  1 ,  ( ( (
norm `  R ) `  x )  x.  r
) )  x.  (
( ( norm `  R
) `  x )  /  2 ) )  =  ( if ( 1  <_  ( (
( norm `  R ) `  x )  x.  r
) ,  1 ,  ( ( ( norm `  R ) `  x
)  x.  r ) )  x.  ( ( ( norm `  R
) `  x )  /  2 ) )
6114, 2, 6, 52, 33, 53, 57, 58, 59, 60nrginvrcnlem 20283 . . . . . 6  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  E. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R ) y )  <  s  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r ) )
6251, 61pm2.61dane 2701 . . . . 5  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  E. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R ) y )  <  s  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r ) )
6316, 18ovresd 6243 . . . . . . . . 9  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( x
( ( dist `  R
)  |`  ( U  X.  U ) ) y )  =  ( x ( dist `  R
) y ) )
6463breq1d 4314 . . . . . . . 8  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
x ( ( dist `  R )  |`  ( U  X.  U ) ) y )  <  s  <->  ( x ( dist `  R
) y )  < 
s ) )
65 simpl 457 . . . . . . . . . . . 12  |-  ( ( x  e.  U  /\  r  e.  RR+ )  ->  x  e.  U )
66 ffvelrn 5853 . . . . . . . . . . . 12  |-  ( ( I : U --> U  /\  x  e.  U )  ->  ( I `  x
)  e.  U )
679, 65, 66syl2an 477 . . . . . . . . . . 11  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  ( I `  x )  e.  U
)
6867adantr 465 . . . . . . . . . 10  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( I `  x )  e.  U
)
6968, 31ovresd 6243 . . . . . . . . 9  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
I `  x )
( ( dist `  R
)  |`  ( U  X.  U ) ) ( I `  y ) )  =  ( ( I `  x ) ( dist `  R
) ( I `  y ) ) )
7069breq1d 4314 . . . . . . . 8  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
( I `  x
) ( ( dist `  R )  |`  ( U  X.  U ) ) ( I `  y
) )  <  r  <->  ( ( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r ) )
7164, 70imbi12d 320 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
( x ( (
dist `  R )  |`  ( U  X.  U
) ) y )  <  s  ->  (
( I `  x
) ( ( dist `  R )  |`  ( U  X.  U ) ) ( I `  y
) )  <  r
)  <->  ( ( x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) ) )
7271ralbidva 2743 . . . . . 6  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  ( A. y  e.  U  ( (
x ( ( dist `  R )  |`  ( U  X.  U ) ) y )  <  s  ->  ( ( I `  x ) ( (
dist `  R )  |`  ( U  X.  U
) ) ( I `
 y ) )  <  r )  <->  A. y  e.  U  ( (
x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) ) )
7372rexbidv 2748 . . . . 5  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  ( E. s  e.  RR+  A. y  e.  U  ( ( x ( ( dist `  R
)  |`  ( U  X.  U ) ) y )  <  s  -> 
( ( I `  x ) ( (
dist `  R )  |`  ( U  X.  U
) ) ( I `
 y ) )  <  r )  <->  E. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) ) )
7462, 73mpbird 232 . . . 4  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  E. s  e.  RR+  A. y  e.  U  ( ( x ( (
dist `  R )  |`  ( U  X.  U
) ) y )  <  s  ->  (
( I `  x
) ( ( dist `  R )  |`  ( U  X.  U ) ) ( I `  y
) )  <  r
) )
7574ralrimivva 2820 . . 3  |-  ( R  e. NrmRing  ->  A. x  e.  U  A. r  e.  RR+  E. s  e.  RR+  A. y  e.  U  ( ( x ( ( dist `  R
)  |`  ( U  X.  U ) ) y )  <  s  -> 
( ( I `  x ) ( (
dist `  R )  |`  ( U  X.  U
) ) ( I `
 y ) )  <  r ) )
76 xpss12 4957 . . . . . . 7  |-  ( ( U  C_  X  /\  U  C_  X )  -> 
( U  X.  U
)  C_  ( X  X.  X ) )
7715, 15, 76mp2an 672 . . . . . 6  |-  ( U  X.  U )  C_  ( X  X.  X
)
78 resabs1 5151 . . . . . 6  |-  ( ( U  X.  U ) 
C_  ( X  X.  X )  ->  (
( ( dist `  R
)  |`  ( X  X.  X ) )  |`  ( U  X.  U
) )  =  ( ( dist `  R
)  |`  ( U  X.  U ) ) )
7977, 78ax-mp 5 . . . . 5  |-  ( ( ( dist `  R
)  |`  ( X  X.  X ) )  |`  ( U  X.  U
) )  =  ( ( dist `  R
)  |`  ( U  X.  U ) )
80 eqid 2443 . . . . . . . 8  |-  ( (
dist `  R )  |`  ( X  X.  X
) )  =  ( ( dist `  R
)  |`  ( X  X.  X ) )
8114, 80xmsxmet 20043 . . . . . . 7  |-  ( R  e.  *MetSp  ->  (
( dist `  R )  |`  ( X  X.  X
) )  e.  ( *Met `  X
) )
8225, 26, 27, 814syl 21 . . . . . 6  |-  ( R  e. NrmRing  ->  ( ( dist `  R )  |`  ( X  X.  X ) )  e.  ( *Met `  X ) )
83 xmetres2 19948 . . . . . 6  |-  ( ( ( ( dist `  R
)  |`  ( X  X.  X ) )  e.  ( *Met `  X )  /\  U  C_  X )  ->  (
( ( dist `  R
)  |`  ( X  X.  X ) )  |`  ( U  X.  U
) )  e.  ( *Met `  U
) )
8482, 15, 83sylancl 662 . . . . 5  |-  ( R  e. NrmRing  ->  ( ( (
dist `  R )  |`  ( X  X.  X
) )  |`  ( U  X.  U ) )  e.  ( *Met `  U ) )
8579, 84syl5eqelr 2528 . . . 4  |-  ( R  e. NrmRing  ->  ( ( dist `  R )  |`  ( U  X.  U ) )  e.  ( *Met `  U ) )
86 eqid 2443 . . . . 5  |-  ( MetOpen `  ( ( dist `  R
)  |`  ( U  X.  U ) ) )  =  ( MetOpen `  (
( dist `  R )  |`  ( U  X.  U
) ) )
8786, 86metcn 20130 . . . 4  |-  ( ( ( ( dist `  R
)  |`  ( U  X.  U ) )  e.  ( *Met `  U )  /\  (
( dist `  R )  |`  ( U  X.  U
) )  e.  ( *Met `  U
) )  ->  (
I  e.  ( (
MetOpen `  ( ( dist `  R )  |`  ( U  X.  U ) ) )  Cn  ( MetOpen `  ( ( dist `  R
)  |`  ( U  X.  U ) ) ) )  <->  ( I : U --> U  /\  A. x  e.  U  A. r  e.  RR+  E. s  e.  RR+  A. y  e.  U  ( ( x ( ( dist `  R
)  |`  ( U  X.  U ) ) y )  <  s  -> 
( ( I `  x ) ( (
dist `  R )  |`  ( U  X.  U
) ) ( I `
 y ) )  <  r ) ) ) )
8885, 85, 87syl2anc 661 . . 3  |-  ( R  e. NrmRing  ->  ( I  e.  ( ( MetOpen `  (
( dist `  R )  |`  ( U  X.  U
) ) )  Cn  ( MetOpen `  ( ( dist `  R )  |`  ( U  X.  U
) ) ) )  <-> 
( I : U --> U  /\  A. x  e.  U  A. r  e.  RR+  E. s  e.  RR+  A. y  e.  U  ( ( x ( (
dist `  R )  |`  ( U  X.  U
) ) y )  <  s  ->  (
( I `  x
) ( ( dist `  R )  |`  ( U  X.  U ) ) ( I `  y
) )  <  r
) ) ) )
899, 75, 88mpbir2and 913 . 2  |-  ( R  e. NrmRing  ->  I  e.  ( ( MetOpen `  ( ( dist `  R )  |`  ( U  X.  U
) ) )  Cn  ( MetOpen `  ( ( dist `  R )  |`  ( U  X.  U
) ) ) ) )
90 nrginvrcn.j . . . . . . 7  |-  J  =  ( TopOpen `  R )
9190, 14, 80mstopn 20039 . . . . . 6  |-  ( R  e.  MetSp  ->  J  =  ( MetOpen `  ( ( dist `  R )  |`  ( X  X.  X
) ) ) )
9225, 26, 913syl 20 . . . . 5  |-  ( R  e. NrmRing  ->  J  =  (
MetOpen `  ( ( dist `  R )  |`  ( X  X.  X ) ) ) )
9392oveq1d 6118 . . . 4  |-  ( R  e. NrmRing  ->  ( Jt  U )  =  ( ( MetOpen `  ( ( dist `  R
)  |`  ( X  X.  X ) ) )t  U ) )
9479eqcomi 2447 . . . . . 6  |-  ( (
dist `  R )  |`  ( U  X.  U
) )  =  ( ( ( dist `  R
)  |`  ( X  X.  X ) )  |`  ( U  X.  U
) )
95 eqid 2443 . . . . . 6  |-  ( MetOpen `  ( ( dist `  R
)  |`  ( X  X.  X ) ) )  =  ( MetOpen `  (
( dist `  R )  |`  ( X  X.  X
) ) )
9694, 95, 86metrest 20111 . . . . 5  |-  ( ( ( ( dist `  R
)  |`  ( X  X.  X ) )  e.  ( *Met `  X )  /\  U  C_  X )  ->  (
( MetOpen `  ( ( dist `  R )  |`  ( X  X.  X
) ) )t  U )  =  ( MetOpen `  (
( dist `  R )  |`  ( U  X.  U
) ) ) )
9782, 15, 96sylancl 662 . . . 4  |-  ( R  e. NrmRing  ->  ( ( MetOpen `  ( ( dist `  R
)  |`  ( X  X.  X ) ) )t  U )  =  ( MetOpen `  ( ( dist `  R
)  |`  ( U  X.  U ) ) ) )
9893, 97eqtrd 2475 . . 3  |-  ( R  e. NrmRing  ->  ( Jt  U )  =  ( MetOpen `  (
( dist `  R )  |`  ( U  X.  U
) ) ) )
9998, 98oveq12d 6121 . 2  |-  ( R  e. NrmRing  ->  ( ( Jt  U )  Cn  ( Jt  U ) )  =  ( ( MetOpen `  ( ( dist `  R )  |`  ( U  X.  U
) ) )  Cn  ( MetOpen `  ( ( dist `  R )  |`  ( U  X.  U
) ) ) ) )
10089, 99eleqtrrd 2520 1  |-  ( R  e. NrmRing  ->  I  e.  ( ( Jt  U )  Cn  ( Jt  U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2618   A.wral 2727   E.wrex 2728    C_ wss 3340   (/)c0 3649   ifcif 3803   class class class wbr 4304    X. cxp 4850    |` cres 4854   -->wf 5426   ` cfv 5430  (class class class)co 6103   0cc0 9294   1c1 9295    x. cmul 9299    < clt 9430    <_ cle 9431    / cdiv 10005   2c2 10383   RR+crp 11003   Basecbs 14186   ↾s cress 14187   distcds 14259   ↾t crest 14371   TopOpenctopn 14372   0gc0g 14390   Grpcgrp 15422  mulGrpcmgp 16603   1rcur 16615   Ringcrg 16657  Unitcui 16743   invrcinvr 16775  NzRingcnzr 17351   *Metcxmt 17813   MetOpencmopn 17818    Cn ccn 18840   *MetSpcxme 19904   MetSpcmt 19905   normcnm 20181  NrmGrpcngp 20182  NrmRingcnrg 20184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-tpos 6757  df-recs 6844  df-rdg 6878  df-1o 6932  df-oadd 6936  df-er 7113  df-map 7228  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-sup 7703  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-7 10397  df-8 10398  df-9 10399  df-10 10400  df-n0 10592  df-z 10659  df-dec 10768  df-uz 10874  df-q 10966  df-rp 11004  df-xneg 11101  df-xadd 11102  df-xmul 11103  df-fz 11450  df-seq 11819  df-exp 11878  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-struct 14188  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-ress 14193  df-plusg 14263  df-mulr 14264  df-tset 14269  df-ple 14270  df-ds 14272  df-rest 14373  df-0g 14392  df-topgen 14394  df-xrs 14452  df-mnd 15427  df-grp 15557  df-minusg 15558  df-sbg 15559  df-mgp 16604  df-ur 16616  df-rng 16659  df-oppr 16727  df-dvdsr 16745  df-unit 16746  df-invr 16776  df-abv 16914  df-nzr 17352  df-psmet 17821  df-xmet 17822  df-met 17823  df-bl 17824  df-mopn 17825  df-top 18515  df-bases 18517  df-topon 18518  df-topsp 18519  df-cn 18843  df-cnp 18844  df-xms 19907  df-ms 19908  df-nm 20187  df-ngp 20188  df-nrg 20190
This theorem is referenced by:  nrgtdrg  20285
  Copyright terms: Public domain W3C validator