MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrginvrcn Structured version   Visualization version   Unicode version

Theorem nrginvrcn 21743
Description: The ring inverse function is continuous in a normed ring. (Note that this is true even in rings which are not division rings.) (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nrginvrcn.x  |-  X  =  ( Base `  R
)
nrginvrcn.u  |-  U  =  (Unit `  R )
nrginvrcn.i  |-  I  =  ( invr `  R
)
nrginvrcn.j  |-  J  =  ( TopOpen `  R )
Assertion
Ref Expression
nrginvrcn  |-  ( R  e. NrmRing  ->  I  e.  ( ( Jt  U )  Cn  ( Jt  U ) ) )

Proof of Theorem nrginvrcn
Dummy variables  s 
r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrgring 21715 . . . 4  |-  ( R  e. NrmRing  ->  R  e.  Ring )
2 nrginvrcn.u . . . . 5  |-  U  =  (Unit `  R )
3 eqid 2462 . . . . 5  |-  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
)
42, 3unitgrp 17944 . . . 4  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  e.  Grp )
52, 3unitgrpbas 17943 . . . . 5  |-  U  =  ( Base `  (
(mulGrp `  R )s  U
) )
6 nrginvrcn.i . . . . . 6  |-  I  =  ( invr `  R
)
72, 3, 6invrfval 17950 . . . . 5  |-  I  =  ( invg `  ( (mulGrp `  R )s  U
) )
85, 7grpinvf 16759 . . . 4  |-  ( ( (mulGrp `  R )s  U
)  e.  Grp  ->  I : U --> U )
91, 4, 83syl 18 . . 3  |-  ( R  e. NrmRing  ->  I : U --> U )
10 1rp 11335 . . . . . . . 8  |-  1  e.  RR+
1110ne0ii 3750 . . . . . . 7  |-  RR+  =/=  (/)
121ad2antrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  R  e.  Ring )
13 nrginvrcn.x . . . . . . . . . . . . . . . 16  |-  X  =  ( Base `  R
)
1413, 2unitss 17937 . . . . . . . . . . . . . . 15  |-  U  C_  X
15 simplrl 775 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  x  e.  U )
1614, 15sseldi 3442 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  x  e.  X )
17 simpr 467 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  y  e.  U )
1814, 17sseldi 3442 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  y  e.  X )
19 eqid 2462 . . . . . . . . . . . . . . 15  |-  ( 1r
`  R )  =  ( 1r `  R
)
20 eqid 2462 . . . . . . . . . . . . . . 15  |-  ( 0g
`  R )  =  ( 0g `  R
)
2113, 19, 20ring1eq0 17869 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  x  e.  X  /\  y  e.  X )  ->  (
( 1r `  R
)  =  ( 0g
`  R )  ->  x  =  y )
)
2212, 16, 18, 21syl3anc 1276 . . . . . . . . . . . . 13  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( ( 1r `  R )  =  ( 0g `  R
)  ->  x  =  y ) )
23 eqid 2462 . . . . . . . . . . . . . . . 16  |-  ( I `
 y )  =  ( I `  y
)
24 nrgngp 21714 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e. NrmRing  ->  R  e. NrmGrp )
25 ngpms 21663 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e. NrmGrp  ->  R  e.  MetSp )
26 msxms 21518 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e.  MetSp  ->  R  e.  *MetSp )
2724, 25, 263syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( R  e. NrmRing  ->  R  e.  *MetSp )
2827ad2antrr 737 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  R  e.  *MetSp )
299adantr 471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  I : U --> U )
3029ffvelrnda 6045 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( I `  y )  e.  U
)
3114, 30sseldi 3442 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( I `  y )  e.  X
)
32 eqid 2462 . . . . . . . . . . . . . . . . . 18  |-  ( dist `  R )  =  (
dist `  R )
3313, 32xmseq0 21528 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  *MetSp  /\  ( I `  y
)  e.  X  /\  ( I `  y
)  e.  X )  ->  ( ( ( I `  y ) ( dist `  R
) ( I `  y ) )  =  0  <->  ( I `  y )  =  ( I `  y ) ) )
3428, 31, 31, 33syl3anc 1276 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
( I `  y
) ( dist `  R
) ( I `  y ) )  =  0  <->  ( I `  y )  =  ( I `  y ) ) )
3523, 34mpbiri 241 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
I `  y )
( dist `  R )
( I `  y
) )  =  0 )
36 simplrr 776 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  r  e.  RR+ )
3736rpgt0d 11373 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  0  <  r )
3835, 37eqbrtrd 4437 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
I `  y )
( dist `  R )
( I `  y
) )  <  r
)
39 fveq2 5888 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
I `  x )  =  ( I `  y ) )
4039oveq1d 6330 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  =  ( ( I `  y ) ( dist `  R ) ( I `
 y ) ) )
4140breq1d 4426 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( ( I `  x ) ( dist `  R ) ( I `
 y ) )  <  r  <->  ( (
I `  y )
( dist `  R )
( I `  y
) )  <  r
) )
4238, 41syl5ibrcom 230 . . . . . . . . . . . . 13  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( x  =  y  ->  ( ( I `  x ) ( dist `  R
) ( I `  y ) )  < 
r ) )
4322, 42syld 45 . . . . . . . . . . . 12  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( ( 1r `  R )  =  ( 0g `  R
)  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )
4443imp 435 . . . . . . . . . . 11  |-  ( ( ( ( R  e. NrmRing  /\  ( x  e.  U  /\  r  e.  RR+ )
)  /\  y  e.  U )  /\  ( 1r `  R )  =  ( 0g `  R
) )  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r )
4544an32s 818 . . . . . . . . . 10  |-  ( ( ( ( R  e. NrmRing  /\  ( x  e.  U  /\  r  e.  RR+ )
)  /\  ( 1r `  R )  =  ( 0g `  R ) )  /\  y  e.  U )  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r )
4645a1d 26 . . . . . . . . 9  |-  ( ( ( ( R  e. NrmRing  /\  ( x  e.  U  /\  r  e.  RR+ )
)  /\  ( 1r `  R )  =  ( 0g `  R ) )  /\  y  e.  U )  ->  (
( x ( dist `  R ) y )  <  s  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r ) )
4746ralrimiva 2814 . . . . . . . 8  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  A. y  e.  U  ( (
x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )
4847ralrimivw 2815 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  A. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )
49 r19.2z 3870 . . . . . . 7  |-  ( (
RR+  =/=  (/)  /\  A. s  e.  RR+  A. y  e.  U  ( (
x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )  ->  E. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )
5011, 48, 49sylancr 674 . . . . . 6  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  E. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) )
51 eqid 2462 . . . . . . 7  |-  ( norm `  R )  =  (
norm `  R )
52 simpll 765 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  R  e. NrmRing )
531ad2antrr 737 . . . . . . . 8  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  R  e.  Ring )
54 simpr 467 . . . . . . . 8  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( 1r `  R )  =/=  ( 0g `  R ) )
5519, 20isnzr 18532 . . . . . . . 8  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  ( 1r `  R
)  =/=  ( 0g
`  R ) ) )
5653, 54, 55sylanbrc 675 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  R  e. NzRing )
57 simplrl 775 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  x  e.  U
)
58 simplrr 776 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  r  e.  RR+ )
59 eqid 2462 . . . . . . 7  |-  ( if ( 1  <_  (
( ( norm `  R
) `  x )  x.  r ) ,  1 ,  ( ( (
norm `  R ) `  x )  x.  r
) )  x.  (
( ( norm `  R
) `  x )  /  2 ) )  =  ( if ( 1  <_  ( (
( norm `  R ) `  x )  x.  r
) ,  1 ,  ( ( ( norm `  R ) `  x
)  x.  r ) )  x.  ( ( ( norm `  R
) `  x )  /  2 ) )
6013, 2, 6, 51, 32, 52, 56, 57, 58, 59nrginvrcnlem 21742 . . . . . 6  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  E. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R ) y )  <  s  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r ) )
6150, 60pm2.61dane 2723 . . . . 5  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  E. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R ) y )  <  s  ->  (
( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r ) )
6215, 17ovresd 6464 . . . . . . . . 9  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( x
( ( dist `  R
)  |`  ( U  X.  U ) ) y )  =  ( x ( dist `  R
) y ) )
6362breq1d 4426 . . . . . . . 8  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
x ( ( dist `  R )  |`  ( U  X.  U ) ) y )  <  s  <->  ( x ( dist `  R
) y )  < 
s ) )
64 simpl 463 . . . . . . . . . . . 12  |-  ( ( x  e.  U  /\  r  e.  RR+ )  ->  x  e.  U )
65 ffvelrn 6043 . . . . . . . . . . . 12  |-  ( ( I : U --> U  /\  x  e.  U )  ->  ( I `  x
)  e.  U )
669, 64, 65syl2an 484 . . . . . . . . . . 11  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  ( I `  x )  e.  U
)
6766adantr 471 . . . . . . . . . 10  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( I `  x )  e.  U
)
6867, 30ovresd 6464 . . . . . . . . 9  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
I `  x )
( ( dist `  R
)  |`  ( U  X.  U ) ) ( I `  y ) )  =  ( ( I `  x ) ( dist `  R
) ( I `  y ) ) )
6968breq1d 4426 . . . . . . . 8  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
( I `  x
) ( ( dist `  R )  |`  ( U  X.  U ) ) ( I `  y
) )  <  r  <->  ( ( I `  x
) ( dist `  R
) ( I `  y ) )  < 
r ) )
7063, 69imbi12d 326 . . . . . . 7  |-  ( ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  /\  y  e.  U
)  ->  ( (
( x ( (
dist `  R )  |`  ( U  X.  U
) ) y )  <  s  ->  (
( I `  x
) ( ( dist `  R )  |`  ( U  X.  U ) ) ( I `  y
) )  <  r
)  <->  ( ( x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) ) )
7170ralbidva 2836 . . . . . 6  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  ( A. y  e.  U  ( (
x ( ( dist `  R )  |`  ( U  X.  U ) ) y )  <  s  ->  ( ( I `  x ) ( (
dist `  R )  |`  ( U  X.  U
) ) ( I `
 y ) )  <  r )  <->  A. y  e.  U  ( (
x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) ) )
7271rexbidv 2913 . . . . 5  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  ( E. s  e.  RR+  A. y  e.  U  ( ( x ( ( dist `  R
)  |`  ( U  X.  U ) ) y )  <  s  -> 
( ( I `  x ) ( (
dist `  R )  |`  ( U  X.  U
) ) ( I `
 y ) )  <  r )  <->  E. s  e.  RR+  A. y  e.  U  ( ( x ( dist `  R
) y )  < 
s  ->  ( (
I `  x )
( dist `  R )
( I `  y
) )  <  r
) ) )
7361, 72mpbird 240 . . . 4  |-  ( ( R  e. NrmRing  /\  (
x  e.  U  /\  r  e.  RR+ ) )  ->  E. s  e.  RR+  A. y  e.  U  ( ( x ( (
dist `  R )  |`  ( U  X.  U
) ) y )  <  s  ->  (
( I `  x
) ( ( dist `  R )  |`  ( U  X.  U ) ) ( I `  y
) )  <  r
) )
7473ralrimivva 2821 . . 3  |-  ( R  e. NrmRing  ->  A. x  e.  U  A. r  e.  RR+  E. s  e.  RR+  A. y  e.  U  ( ( x ( ( dist `  R
)  |`  ( U  X.  U ) ) y )  <  s  -> 
( ( I `  x ) ( (
dist `  R )  |`  ( U  X.  U
) ) ( I `
 y ) )  <  r ) )
75 xpss12 4959 . . . . . . 7  |-  ( ( U  C_  X  /\  U  C_  X )  -> 
( U  X.  U
)  C_  ( X  X.  X ) )
7614, 14, 75mp2an 683 . . . . . 6  |-  ( U  X.  U )  C_  ( X  X.  X
)
77 resabs1 5152 . . . . . 6  |-  ( ( U  X.  U ) 
C_  ( X  X.  X )  ->  (
( ( dist `  R
)  |`  ( X  X.  X ) )  |`  ( U  X.  U
) )  =  ( ( dist `  R
)  |`  ( U  X.  U ) ) )
7876, 77ax-mp 5 . . . . 5  |-  ( ( ( dist `  R
)  |`  ( X  X.  X ) )  |`  ( U  X.  U
) )  =  ( ( dist `  R
)  |`  ( U  X.  U ) )
79 eqid 2462 . . . . . . . 8  |-  ( (
dist `  R )  |`  ( X  X.  X
) )  =  ( ( dist `  R
)  |`  ( X  X.  X ) )
8013, 79xmsxmet 21520 . . . . . . 7  |-  ( R  e.  *MetSp  ->  (
( dist `  R )  |`  ( X  X.  X
) )  e.  ( *Met `  X
) )
8124, 25, 26, 804syl 19 . . . . . 6  |-  ( R  e. NrmRing  ->  ( ( dist `  R )  |`  ( X  X.  X ) )  e.  ( *Met `  X ) )
82 xmetres2 21425 . . . . . 6  |-  ( ( ( ( dist `  R
)  |`  ( X  X.  X ) )  e.  ( *Met `  X )  /\  U  C_  X )  ->  (
( ( dist `  R
)  |`  ( X  X.  X ) )  |`  ( U  X.  U
) )  e.  ( *Met `  U
) )
8381, 14, 82sylancl 673 . . . . 5  |-  ( R  e. NrmRing  ->  ( ( (
dist `  R )  |`  ( X  X.  X
) )  |`  ( U  X.  U ) )  e.  ( *Met `  U ) )
8478, 83syl5eqelr 2545 . . . 4  |-  ( R  e. NrmRing  ->  ( ( dist `  R )  |`  ( U  X.  U ) )  e.  ( *Met `  U ) )
85 eqid 2462 . . . . 5  |-  ( MetOpen `  ( ( dist `  R
)  |`  ( U  X.  U ) ) )  =  ( MetOpen `  (
( dist `  R )  |`  ( U  X.  U
) ) )
8685, 85metcn 21607 . . . 4  |-  ( ( ( ( dist `  R
)  |`  ( U  X.  U ) )  e.  ( *Met `  U )  /\  (
( dist `  R )  |`  ( U  X.  U
) )  e.  ( *Met `  U
) )  ->  (
I  e.  ( (
MetOpen `  ( ( dist `  R )  |`  ( U  X.  U ) ) )  Cn  ( MetOpen `  ( ( dist `  R
)  |`  ( U  X.  U ) ) ) )  <->  ( I : U --> U  /\  A. x  e.  U  A. r  e.  RR+  E. s  e.  RR+  A. y  e.  U  ( ( x ( ( dist `  R
)  |`  ( U  X.  U ) ) y )  <  s  -> 
( ( I `  x ) ( (
dist `  R )  |`  ( U  X.  U
) ) ( I `
 y ) )  <  r ) ) ) )
8784, 84, 86syl2anc 671 . . 3  |-  ( R  e. NrmRing  ->  ( I  e.  ( ( MetOpen `  (
( dist `  R )  |`  ( U  X.  U
) ) )  Cn  ( MetOpen `  ( ( dist `  R )  |`  ( U  X.  U
) ) ) )  <-> 
( I : U --> U  /\  A. x  e.  U  A. r  e.  RR+  E. s  e.  RR+  A. y  e.  U  ( ( x ( (
dist `  R )  |`  ( U  X.  U
) ) y )  <  s  ->  (
( I `  x
) ( ( dist `  R )  |`  ( U  X.  U ) ) ( I `  y
) )  <  r
) ) ) )
889, 74, 87mpbir2and 938 . 2  |-  ( R  e. NrmRing  ->  I  e.  ( ( MetOpen `  ( ( dist `  R )  |`  ( U  X.  U
) ) )  Cn  ( MetOpen `  ( ( dist `  R )  |`  ( U  X.  U
) ) ) ) )
89 nrginvrcn.j . . . . . . 7  |-  J  =  ( TopOpen `  R )
9089, 13, 79mstopn 21516 . . . . . 6  |-  ( R  e.  MetSp  ->  J  =  ( MetOpen `  ( ( dist `  R )  |`  ( X  X.  X
) ) ) )
9124, 25, 903syl 18 . . . . 5  |-  ( R  e. NrmRing  ->  J  =  (
MetOpen `  ( ( dist `  R )  |`  ( X  X.  X ) ) ) )
9291oveq1d 6330 . . . 4  |-  ( R  e. NrmRing  ->  ( Jt  U )  =  ( ( MetOpen `  ( ( dist `  R
)  |`  ( X  X.  X ) ) )t  U ) )
9378eqcomi 2471 . . . . . 6  |-  ( (
dist `  R )  |`  ( U  X.  U
) )  =  ( ( ( dist `  R
)  |`  ( X  X.  X ) )  |`  ( U  X.  U
) )
94 eqid 2462 . . . . . 6  |-  ( MetOpen `  ( ( dist `  R
)  |`  ( X  X.  X ) ) )  =  ( MetOpen `  (
( dist `  R )  |`  ( X  X.  X
) ) )
9593, 94, 85metrest 21588 . . . . 5  |-  ( ( ( ( dist `  R
)  |`  ( X  X.  X ) )  e.  ( *Met `  X )  /\  U  C_  X )  ->  (
( MetOpen `  ( ( dist `  R )  |`  ( X  X.  X
) ) )t  U )  =  ( MetOpen `  (
( dist `  R )  |`  ( U  X.  U
) ) ) )
9681, 14, 95sylancl 673 . . . 4  |-  ( R  e. NrmRing  ->  ( ( MetOpen `  ( ( dist `  R
)  |`  ( X  X.  X ) ) )t  U )  =  ( MetOpen `  ( ( dist `  R
)  |`  ( U  X.  U ) ) ) )
9792, 96eqtrd 2496 . . 3  |-  ( R  e. NrmRing  ->  ( Jt  U )  =  ( MetOpen `  (
( dist `  R )  |`  ( U  X.  U
) ) ) )
9897, 97oveq12d 6333 . 2  |-  ( R  e. NrmRing  ->  ( ( Jt  U )  Cn  ( Jt  U ) )  =  ( ( MetOpen `  ( ( dist `  R )  |`  ( U  X.  U
) ) )  Cn  ( MetOpen `  ( ( dist `  R )  |`  ( U  X.  U
) ) ) ) )
9988, 98eleqtrrd 2543 1  |-  ( R  e. NrmRing  ->  I  e.  ( ( Jt  U )  Cn  ( Jt  U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1455    e. wcel 1898    =/= wne 2633   A.wral 2749   E.wrex 2750    C_ wss 3416   (/)c0 3743   ifcif 3893   class class class wbr 4416    X. cxp 4851    |` cres 4855   -->wf 5597   ` cfv 5601  (class class class)co 6315   0cc0 9565   1c1 9566    x. cmul 9570    < clt 9701    <_ cle 9702    / cdiv 10297   2c2 10687   RR+crp 11331   Basecbs 15170   ↾s cress 15171   distcds 15248   ↾t crest 15368   TopOpenctopn 15369   0gc0g 15387   Grpcgrp 16718  mulGrpcmgp 17772   1rcur 17784   Ringcrg 17829  Unitcui 17916   invrcinvr 17948  NzRingcnzr 18530   *Metcxmt 19004   MetOpencmopn 19009    Cn ccn 20289   *MetSpcxme 21381   MetSpcmt 21382   normcnm 21640  NrmGrpcngp 21641  NrmRingcnrg 21643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642  ax-pre-sup 9643
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-om 6720  df-1st 6820  df-2nd 6821  df-tpos 6999  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-1o 7208  df-oadd 7212  df-er 7389  df-map 7500  df-en 7596  df-dom 7597  df-sdom 7598  df-fin 7599  df-sup 7982  df-inf 7983  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-div 10298  df-nn 10638  df-2 10696  df-3 10697  df-4 10698  df-5 10699  df-6 10700  df-7 10701  df-8 10702  df-9 10703  df-10 10704  df-n0 10899  df-z 10967  df-dec 11081  df-uz 11189  df-q 11294  df-rp 11332  df-xneg 11438  df-xadd 11439  df-xmul 11440  df-fz 11814  df-seq 12246  df-exp 12305  df-cj 13211  df-re 13212  df-im 13213  df-sqrt 13347  df-abs 13348  df-struct 15172  df-ndx 15173  df-slot 15174  df-base 15175  df-sets 15176  df-ress 15177  df-plusg 15252  df-mulr 15253  df-tset 15258  df-ple 15259  df-ds 15261  df-rest 15370  df-0g 15389  df-topgen 15391  df-xrs 15449  df-mgm 16537  df-sgrp 16576  df-mnd 16586  df-grp 16722  df-minusg 16723  df-sbg 16724  df-mgp 17773  df-ur 17785  df-ring 17831  df-oppr 17900  df-dvdsr 17918  df-unit 17919  df-invr 17949  df-abv 18094  df-nzr 18531  df-psmet 19011  df-xmet 19012  df-met 19013  df-bl 19014  df-mopn 19015  df-top 19970  df-bases 19971  df-topon 19972  df-topsp 19973  df-cn 20292  df-cnp 20293  df-xms 21384  df-ms 21385  df-nm 21646  df-ngp 21647  df-nrg 21649
This theorem is referenced by:  nrgtdrg  21744
  Copyright terms: Public domain W3C validator