MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerf Unicode version

Theorem nqerf 8763
Description: Corollary of nqereu 8762: the function  /Q is actually a function. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerf  |-  /Q :
( N.  X.  N. )
--> Q.

Proof of Theorem nqerf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-erq 8746 . . . . . . 7  |-  /Q  =  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. ) )
2 inss2 3522 . . . . . . 7  |-  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. )
)  C_  ( ( N.  X.  N. )  X. 
Q. )
31, 2eqsstri 3338 . . . . . 6  |-  /Q  C_  ( ( N.  X.  N. )  X.  Q. )
4 xpss 4941 . . . . . 6  |-  ( ( N.  X.  N. )  X.  Q. )  C_  ( _V  X.  _V )
53, 4sstri 3317 . . . . 5  |-  /Q  C_  ( _V  X.  _V )
6 df-rel 4844 . . . . 5  |-  ( Rel 
/Q 
<->  /Q  C_  ( _V  X.  _V ) )
75, 6mpbir 201 . . . 4  |-  Rel  /Q
8 nqereu 8762 . . . . . . . 8  |-  ( x  e.  ( N.  X.  N. )  ->  E! y  e.  Q.  y  ~Q  x )
9 df-reu 2673 . . . . . . . . 9  |-  ( E! y  e.  Q.  y  ~Q  x  <->  E! y ( y  e.  Q.  /\  y  ~Q  x ) )
10 eumo 2294 . . . . . . . . 9  |-  ( E! y ( y  e. 
Q.  /\  y  ~Q  x )  ->  E* y ( y  e. 
Q.  /\  y  ~Q  x ) )
119, 10sylbi 188 . . . . . . . 8  |-  ( E! y  e.  Q.  y  ~Q  x  ->  E* y
( y  e.  Q.  /\  y  ~Q  x ) )
128, 11syl 16 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  E* y
( y  e.  Q.  /\  y  ~Q  x ) )
13 moanimv 2312 . . . . . . 7  |-  ( E* y ( x  e.  ( N.  X.  N. )  /\  ( y  e. 
Q.  /\  y  ~Q  x ) )  <->  ( x  e.  ( N.  X.  N. )  ->  E* y ( y  e.  Q.  /\  y  ~Q  x ) ) )
1412, 13mpbir 201 . . . . . 6  |-  E* y
( x  e.  ( N.  X.  N. )  /\  ( y  e.  Q.  /\  y  ~Q  x ) )
153brel 4885 . . . . . . . . 9  |-  ( x /Q y  ->  (
x  e.  ( N. 
X.  N. )  /\  y  e.  Q. ) )
1615simpld 446 . . . . . . . 8  |-  ( x /Q y  ->  x  e.  ( N.  X.  N. ) )
1715simprd 450 . . . . . . . 8  |-  ( x /Q y  ->  y  e.  Q. )
18 enqer 8754 . . . . . . . . . 10  |-  ~Q  Er  ( N.  X.  N. )
1918a1i 11 . . . . . . . . 9  |-  ( x /Q y  ->  ~Q  Er  ( N.  X.  N. )
)
20 inss1 3521 . . . . . . . . . . 11  |-  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. )
)  C_  ~Q
211, 20eqsstri 3338 . . . . . . . . . 10  |-  /Q  C_  ~Q
2221ssbri 4214 . . . . . . . . 9  |-  ( x /Q y  ->  x  ~Q  y )
2319, 22ersym 6876 . . . . . . . 8  |-  ( x /Q y  ->  y  ~Q  x )
2416, 17, 23jca32 522 . . . . . . 7  |-  ( x /Q y  ->  (
x  e.  ( N. 
X.  N. )  /\  (
y  e.  Q.  /\  y  ~Q  x ) ) )
2524moimi 2301 . . . . . 6  |-  ( E* y ( x  e.  ( N.  X.  N. )  /\  ( y  e. 
Q.  /\  y  ~Q  x ) )  ->  E* y  x /Q y )
2614, 25ax-mp 8 . . . . 5  |-  E* y  x /Q y
2726ax-gen 1552 . . . 4  |-  A. x E* y  x /Q y
28 dffun6 5428 . . . 4  |-  ( Fun 
/Q 
<->  ( Rel  /Q  /\  A. x E* y  x /Q y ) )
297, 27, 28mpbir2an 887 . . 3  |-  Fun  /Q
30 dmss 5028 . . . . . 6  |-  ( /Q  C_  ( ( N.  X.  N. )  X.  Q. )  ->  dom  /Q  C_  dom  ( ( N.  X.  N. )  X.  Q. )
)
313, 30ax-mp 8 . . . . 5  |-  dom  /Q  C_ 
dom  ( ( N. 
X.  N. )  X.  Q. )
32 1nq 8761 . . . . . 6  |-  1Q  e.  Q.
33 ne0i 3594 . . . . . 6  |-  ( 1Q  e.  Q.  ->  Q.  =/=  (/) )
34 dmxp 5047 . . . . . 6  |-  ( Q.  =/=  (/)  ->  dom  ( ( N.  X.  N. )  X.  Q. )  =  ( N.  X.  N. )
)
3532, 33, 34mp2b 10 . . . . 5  |-  dom  (
( N.  X.  N. )  X.  Q. )  =  ( N.  X.  N. )
3631, 35sseqtri 3340 . . . 4  |-  dom  /Q  C_  ( N.  X.  N. )
37 reurex 2882 . . . . . . . 8  |-  ( E! y  e.  Q.  y  ~Q  x  ->  E. y  e.  Q.  y  ~Q  x
)
38 simpll 731 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  x  e.  ( N.  X.  N. )
)
39 simplr 732 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  y  e.  Q. )
4018a1i 11 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  ~Q  Er  ( N.  X.  N. ) )
41 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  y  ~Q  x )
4240, 41ersym 6876 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  x  ~Q  y )
431breqi 4178 . . . . . . . . . . . 12  |-  ( x /Q y  <->  x (  ~Q  i^i  ( ( N. 
X.  N. )  X.  Q. ) ) y )
44 brinxp2 4898 . . . . . . . . . . . 12  |-  ( x (  ~Q  i^i  (
( N.  X.  N. )  X.  Q. ) ) y  <->  ( x  e.  ( N.  X.  N. )  /\  y  e.  Q.  /\  x  ~Q  y ) )
4543, 44bitri 241 . . . . . . . . . . 11  |-  ( x /Q y  <->  ( x  e.  ( N.  X.  N. )  /\  y  e.  Q.  /\  x  ~Q  y ) )
4638, 39, 42, 45syl3anbrc 1138 . . . . . . . . . 10  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  x /Q y )
4746ex 424 . . . . . . . . 9  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  Q. )  ->  (
y  ~Q  x  ->  x /Q y ) )
4847reximdva 2778 . . . . . . . 8  |-  ( x  e.  ( N.  X.  N. )  ->  ( E. y  e.  Q.  y  ~Q  x  ->  E. y  e.  Q.  x /Q y
) )
49 rexex 2725 . . . . . . . 8  |-  ( E. y  e.  Q.  x /Q y  ->  E. y  x /Q y )
5037, 48, 49syl56 32 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  ( E! y  e.  Q.  y  ~Q  x  ->  E. y  x /Q y ) )
518, 50mpd 15 . . . . . 6  |-  ( x  e.  ( N.  X.  N. )  ->  E. y  x /Q y )
52 vex 2919 . . . . . . 7  |-  x  e. 
_V
5352eldm 5026 . . . . . 6  |-  ( x  e.  dom  /Q  <->  E. y  x /Q y )
5451, 53sylibr 204 . . . . 5  |-  ( x  e.  ( N.  X.  N. )  ->  x  e. 
dom  /Q )
5554ssriv 3312 . . . 4  |-  ( N. 
X.  N. )  C_  dom  /Q
5636, 55eqssi 3324 . . 3  |-  dom  /Q  =  ( N.  X.  N. )
57 df-fn 5416 . . 3  |-  ( /Q  Fn  ( N.  X.  N. )  <->  ( Fun  /Q  /\ 
dom  /Q  =  ( N.  X.  N. ) ) )
5829, 56, 57mpbir2an 887 . 2  |-  /Q  Fn  ( N.  X.  N. )
59 rnss 5057 . . . 4  |-  ( /Q  C_  ( ( N.  X.  N. )  X.  Q. )  ->  ran  /Q  C_  ran  ( ( N.  X.  N. )  X.  Q. )
)
603, 59ax-mp 8 . . 3  |-  ran  /Q  C_ 
ran  ( ( N. 
X.  N. )  X.  Q. )
61 rnxpss 5260 . . 3  |-  ran  (
( N.  X.  N. )  X.  Q. )  C_  Q.
6260, 61sstri 3317 . 2  |-  ran  /Q  C_ 
Q.
63 df-f 5417 . 2  |-  ( /Q : ( N.  X.  N. ) --> Q.  <->  ( /Q  Fn  ( N.  X.  N. )  /\  ran  /Q  C_  Q. ) )
6458, 62, 63mpbir2an 887 1  |-  /Q :
( N.  X.  N. )
--> Q.
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1721   E!weu 2254   E*wmo 2255    =/= wne 2567   E.wrex 2667   E!wreu 2668   _Vcvv 2916    i^i cin 3279    C_ wss 3280   (/)c0 3588   class class class wbr 4172    X. cxp 4835   dom cdm 4837   ran crn 4838   Rel wrel 4842   Fun wfun 5407    Fn wfn 5408   -->wf 5409    Er wer 6861   N.cnpi 8675    ~Q ceq 8682   Q.cnq 8683   1Qc1q 8684   /Qcerq 8685
This theorem is referenced by:  nqercl  8764  nqerrel  8765  nqerid  8766  addnqf  8781  mulnqf  8782  adderpq  8789  mulerpq  8790  lterpq  8803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-er 6864  df-ni 8705  df-mi 8707  df-lti 8708  df-enq 8744  df-nq 8745  df-erq 8746  df-1nq 8749
  Copyright terms: Public domain W3C validator