MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerf Unicode version

Theorem nqerf 8434
Description: Corollary of nqereu 8433: the function  /Q is actually a function. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerf  |-  /Q :
( N.  X.  N. )
--> Q.

Proof of Theorem nqerf
StepHypRef Expression
1 df-erq 8417 . . . . . . 7  |-  /Q  =  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. ) )
2 inss2 3297 . . . . . . 7  |-  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. )
)  C_  ( ( N.  X.  N. )  X. 
Q. )
31, 2eqsstri 3129 . . . . . 6  |-  /Q  C_  ( ( N.  X.  N. )  X.  Q. )
4 xpss 4700 . . . . . 6  |-  ( ( N.  X.  N. )  X.  Q. )  C_  ( _V  X.  _V )
53, 4sstri 3109 . . . . 5  |-  /Q  C_  ( _V  X.  _V )
6 df-rel 4595 . . . . 5  |-  ( Rel 
/Q 
<->  /Q  C_  ( _V  X.  _V ) )
75, 6mpbir 202 . . . 4  |-  Rel  /Q
8 nqereu 8433 . . . . . . . 8  |-  ( x  e.  ( N.  X.  N. )  ->  E! y  e.  Q.  y  ~Q  x )
9 df-reu 2515 . . . . . . . . 9  |-  ( E! y  e.  Q.  y  ~Q  x  <->  E! y ( y  e.  Q.  /\  y  ~Q  x ) )
10 eumo 2153 . . . . . . . . 9  |-  ( E! y ( y  e. 
Q.  /\  y  ~Q  x )  ->  E* y ( y  e. 
Q.  /\  y  ~Q  x ) )
119, 10sylbi 189 . . . . . . . 8  |-  ( E! y  e.  Q.  y  ~Q  x  ->  E* y
( y  e.  Q.  /\  y  ~Q  x ) )
128, 11syl 17 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  E* y
( y  e.  Q.  /\  y  ~Q  x ) )
13 moanimv 2171 . . . . . . 7  |-  ( E* y ( x  e.  ( N.  X.  N. )  /\  ( y  e. 
Q.  /\  y  ~Q  x ) )  <->  ( x  e.  ( N.  X.  N. )  ->  E* y ( y  e.  Q.  /\  y  ~Q  x ) ) )
1412, 13mpbir 202 . . . . . 6  |-  E* y
( x  e.  ( N.  X.  N. )  /\  ( y  e.  Q.  /\  y  ~Q  x ) )
153brel 4644 . . . . . . . . 9  |-  ( x /Q y  ->  (
x  e.  ( N. 
X.  N. )  /\  y  e.  Q. ) )
1615simpld 447 . . . . . . . 8  |-  ( x /Q y  ->  x  e.  ( N.  X.  N. ) )
1715simprd 451 . . . . . . . 8  |-  ( x /Q y  ->  y  e.  Q. )
18 enqer 8425 . . . . . . . . . 10  |-  ~Q  Er  ( N.  X.  N. )
1918a1i 12 . . . . . . . . 9  |-  ( x /Q y  ->  ~Q  Er  ( N.  X.  N. )
)
20 inss1 3296 . . . . . . . . . . 11  |-  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. )
)  C_  ~Q
211, 20eqsstri 3129 . . . . . . . . . 10  |-  /Q  C_  ~Q
2221ssbri 3962 . . . . . . . . 9  |-  ( x /Q y  ->  x  ~Q  y )
2319, 22ersym 6558 . . . . . . . 8  |-  ( x /Q y  ->  y  ~Q  x )
2416, 17, 23jca32 523 . . . . . . 7  |-  ( x /Q y  ->  (
x  e.  ( N. 
X.  N. )  /\  (
y  e.  Q.  /\  y  ~Q  x ) ) )
2524immoi 2160 . . . . . 6  |-  ( E* y ( x  e.  ( N.  X.  N. )  /\  ( y  e. 
Q.  /\  y  ~Q  x ) )  ->  E* y  x /Q y )
2614, 25ax-mp 10 . . . . 5  |-  E* y  x /Q y
2726ax-gen 1536 . . . 4  |-  A. x E* y  x /Q y
28 dffun6 5128 . . . 4  |-  ( Fun 
/Q 
<->  ( Rel  /Q  /\  A. x E* y  x /Q y ) )
297, 27, 28mpbir2an 891 . . 3  |-  Fun  /Q
30 dmss 4785 . . . . . 6  |-  ( /Q  C_  ( ( N.  X.  N. )  X.  Q. )  ->  dom  /Q  C_  dom  ( ( N.  X.  N. )  X.  Q. )
)
313, 30ax-mp 10 . . . . 5  |-  dom  /Q  C_ 
dom  ( ( N. 
X.  N. )  X.  Q. )
32 1nq 8432 . . . . . 6  |-  1Q  e.  Q.
33 ne0i 3368 . . . . . 6  |-  ( 1Q  e.  Q.  ->  Q.  =/=  (/) )
34 dmxp 4804 . . . . . 6  |-  ( Q.  =/=  (/)  ->  dom  ( ( N.  X.  N. )  X.  Q. )  =  ( N.  X.  N. )
)
3532, 33, 34mp2b 11 . . . . 5  |-  dom  (
( N.  X.  N. )  X.  Q. )  =  ( N.  X.  N. )
3631, 35sseqtri 3131 . . . 4  |-  dom  /Q  C_  ( N.  X.  N. )
37 reurex 2890 . . . . . . . 8  |-  ( E! y  e.  Q.  y  ~Q  x  ->  E. y  e.  Q.  y  ~Q  x
)
38 simpll 733 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  x  e.  ( N.  X.  N. )
)
39 simplr 734 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  y  e.  Q. )
4018a1i 12 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  ~Q  Er  ( N.  X.  N. ) )
41 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  y  ~Q  x )
4240, 41ersym 6558 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  x  ~Q  y )
431breqi 3926 . . . . . . . . . . . 12  |-  ( x /Q y  <->  x (  ~Q  i^i  ( ( N. 
X.  N. )  X.  Q. ) ) y )
44 brinxp2 4658 . . . . . . . . . . . 12  |-  ( x (  ~Q  i^i  (
( N.  X.  N. )  X.  Q. ) ) y  <->  ( x  e.  ( N.  X.  N. )  /\  y  e.  Q.  /\  x  ~Q  y ) )
4543, 44bitri 242 . . . . . . . . . . 11  |-  ( x /Q y  <->  ( x  e.  ( N.  X.  N. )  /\  y  e.  Q.  /\  x  ~Q  y ) )
4638, 39, 42, 45syl3anbrc 1141 . . . . . . . . . 10  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  x /Q y )
4746ex 425 . . . . . . . . 9  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  Q. )  ->  (
y  ~Q  x  ->  x /Q y ) )
4847reximdva 2617 . . . . . . . 8  |-  ( x  e.  ( N.  X.  N. )  ->  ( E. y  e.  Q.  y  ~Q  x  ->  E. y  e.  Q.  x /Q y
) )
49 rexex 2564 . . . . . . . 8  |-  ( E. y  e.  Q.  x /Q y  ->  E. y  x /Q y )
5037, 48, 49syl56 32 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  ( E! y  e.  Q.  y  ~Q  x  ->  E. y  x /Q y ) )
518, 50mpd 16 . . . . . 6  |-  ( x  e.  ( N.  X.  N. )  ->  E. y  x /Q y )
52 vex 2730 . . . . . . 7  |-  x  e. 
_V
5352eldm 4783 . . . . . 6  |-  ( x  e.  dom  /Q  <->  E. y  x /Q y )
5451, 53sylibr 205 . . . . 5  |-  ( x  e.  ( N.  X.  N. )  ->  x  e. 
dom  /Q )
5554ssriv 3105 . . . 4  |-  ( N. 
X.  N. )  C_  dom  /Q
5636, 55eqssi 3116 . . 3  |-  dom  /Q  =  ( N.  X.  N. )
57 df-fn 4603 . . 3  |-  ( /Q  Fn  ( N.  X.  N. )  <->  ( Fun  /Q  /\ 
dom  /Q  =  ( N.  X.  N. ) ) )
5829, 56, 57mpbir2an 891 . 2  |-  /Q  Fn  ( N.  X.  N. )
59 rnss 4814 . . . 4  |-  ( /Q  C_  ( ( N.  X.  N. )  X.  Q. )  ->  ran  /Q  C_  ran  ( ( N.  X.  N. )  X.  Q. )
)
603, 59ax-mp 10 . . 3  |-  ran  /Q  C_ 
ran  ( ( N. 
X.  N. )  X.  Q. )
61 rnxpss 5015 . . 3  |-  ran  (
( N.  X.  N. )  X.  Q. )  C_  Q.
6260, 61sstri 3109 . 2  |-  ran  /Q  C_ 
Q.
63 df-f 4604 . 2  |-  ( /Q : ( N.  X.  N. ) --> Q.  <->  ( /Q  Fn  ( N.  X.  N. )  /\  ran  /Q  C_  Q. ) )
6458, 62, 63mpbir2an 891 1  |-  /Q :
( N.  X.  N. )
--> Q.
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939   A.wal 1532   E.wex 1537    = wceq 1619    e. wcel 1621   E!weu 2114   E*wmo 2115    =/= wne 2412   E.wrex 2510   E!wreu 2511   _Vcvv 2727    i^i cin 3077    C_ wss 3078   (/)c0 3362   class class class wbr 3920    X. cxp 4578   dom cdm 4580   ran crn 4581   Rel wrel 4585   Fun wfun 4586    Fn wfn 4587   -->wf 4588    Er wer 6543   N.cnpi 8346    ~Q ceq 8353   Q.cnq 8354   1Qc1q 8355   /Qcerq 8356
This theorem is referenced by:  nqercl  8435  nqerrel  8436  nqerid  8437  addnqf  8452  mulnqf  8453  adderpq  8460  mulerpq  8461  lterpq  8474
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-omul 6370  df-er 6546  df-ni 8376  df-mi 8378  df-lti 8379  df-enq 8415  df-nq 8416  df-erq 8417  df-1nq 8420
  Copyright terms: Public domain W3C validator