MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerf Structured version   Visualization version   Unicode version

Theorem nqerf 9355
Description: Corollary of nqereu 9354: the function  /Q is actually a function. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerf  |-  /Q :
( N.  X.  N. )
--> Q.

Proof of Theorem nqerf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-erq 9338 . . . . . . 7  |-  /Q  =  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. ) )
2 inss2 3653 . . . . . . 7  |-  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. )
)  C_  ( ( N.  X.  N. )  X. 
Q. )
31, 2eqsstri 3462 . . . . . 6  |-  /Q  C_  ( ( N.  X.  N. )  X.  Q. )
4 xpss 4941 . . . . . 6  |-  ( ( N.  X.  N. )  X.  Q. )  C_  ( _V  X.  _V )
53, 4sstri 3441 . . . . 5  |-  /Q  C_  ( _V  X.  _V )
6 df-rel 4841 . . . . 5  |-  ( Rel 
/Q 
<->  /Q  C_  ( _V  X.  _V ) )
75, 6mpbir 213 . . . 4  |-  Rel  /Q
8 nqereu 9354 . . . . . . . 8  |-  ( x  e.  ( N.  X.  N. )  ->  E! y  e.  Q.  y  ~Q  x )
9 df-reu 2744 . . . . . . . . 9  |-  ( E! y  e.  Q.  y  ~Q  x  <->  E! y ( y  e.  Q.  /\  y  ~Q  x ) )
10 eumo 2328 . . . . . . . . 9  |-  ( E! y ( y  e. 
Q.  /\  y  ~Q  x )  ->  E* y ( y  e. 
Q.  /\  y  ~Q  x ) )
119, 10sylbi 199 . . . . . . . 8  |-  ( E! y  e.  Q.  y  ~Q  x  ->  E* y
( y  e.  Q.  /\  y  ~Q  x ) )
128, 11syl 17 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  E* y
( y  e.  Q.  /\  y  ~Q  x ) )
13 moanimv 2360 . . . . . . 7  |-  ( E* y ( x  e.  ( N.  X.  N. )  /\  ( y  e. 
Q.  /\  y  ~Q  x ) )  <->  ( x  e.  ( N.  X.  N. )  ->  E* y ( y  e.  Q.  /\  y  ~Q  x ) ) )
1412, 13mpbir 213 . . . . . 6  |-  E* y
( x  e.  ( N.  X.  N. )  /\  ( y  e.  Q.  /\  y  ~Q  x ) )
153brel 4883 . . . . . . . . 9  |-  ( x /Q y  ->  (
x  e.  ( N. 
X.  N. )  /\  y  e.  Q. ) )
1615simpld 461 . . . . . . . 8  |-  ( x /Q y  ->  x  e.  ( N.  X.  N. ) )
1715simprd 465 . . . . . . . 8  |-  ( x /Q y  ->  y  e.  Q. )
18 enqer 9346 . . . . . . . . . 10  |-  ~Q  Er  ( N.  X.  N. )
1918a1i 11 . . . . . . . . 9  |-  ( x /Q y  ->  ~Q  Er  ( N.  X.  N. )
)
20 inss1 3652 . . . . . . . . . . 11  |-  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. )
)  C_  ~Q
211, 20eqsstri 3462 . . . . . . . . . 10  |-  /Q  C_  ~Q
2221ssbri 4445 . . . . . . . . 9  |-  ( x /Q y  ->  x  ~Q  y )
2319, 22ersym 7375 . . . . . . . 8  |-  ( x /Q y  ->  y  ~Q  x )
2416, 17, 23jca32 538 . . . . . . 7  |-  ( x /Q y  ->  (
x  e.  ( N. 
X.  N. )  /\  (
y  e.  Q.  /\  y  ~Q  x ) ) )
2524moimi 2349 . . . . . 6  |-  ( E* y ( x  e.  ( N.  X.  N. )  /\  ( y  e. 
Q.  /\  y  ~Q  x ) )  ->  E* y  x /Q y )
2614, 25ax-mp 5 . . . . 5  |-  E* y  x /Q y
2726ax-gen 1669 . . . 4  |-  A. x E* y  x /Q y
28 dffun6 5597 . . . 4  |-  ( Fun 
/Q 
<->  ( Rel  /Q  /\  A. x E* y  x /Q y ) )
297, 27, 28mpbir2an 931 . . 3  |-  Fun  /Q
30 dmss 5034 . . . . . 6  |-  ( /Q  C_  ( ( N.  X.  N. )  X.  Q. )  ->  dom  /Q  C_  dom  ( ( N.  X.  N. )  X.  Q. )
)
313, 30ax-mp 5 . . . . 5  |-  dom  /Q  C_ 
dom  ( ( N. 
X.  N. )  X.  Q. )
32 1nq 9353 . . . . . 6  |-  1Q  e.  Q.
33 ne0i 3737 . . . . . 6  |-  ( 1Q  e.  Q.  ->  Q.  =/=  (/) )
34 dmxp 5053 . . . . . 6  |-  ( Q.  =/=  (/)  ->  dom  ( ( N.  X.  N. )  X.  Q. )  =  ( N.  X.  N. )
)
3532, 33, 34mp2b 10 . . . . 5  |-  dom  (
( N.  X.  N. )  X.  Q. )  =  ( N.  X.  N. )
3631, 35sseqtri 3464 . . . 4  |-  dom  /Q  C_  ( N.  X.  N. )
37 reurex 3009 . . . . . . . 8  |-  ( E! y  e.  Q.  y  ~Q  x  ->  E. y  e.  Q.  y  ~Q  x
)
38 simpll 760 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  x  e.  ( N.  X.  N. )
)
39 simplr 762 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  y  e.  Q. )
4018a1i 11 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  ~Q  Er  ( N.  X.  N. ) )
41 simpr 463 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  y  ~Q  x )
4240, 41ersym 7375 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  x  ~Q  y )
431breqi 4408 . . . . . . . . . . . 12  |-  ( x /Q y  <->  x (  ~Q  i^i  ( ( N. 
X.  N. )  X.  Q. ) ) y )
44 brinxp2 4896 . . . . . . . . . . . 12  |-  ( x (  ~Q  i^i  (
( N.  X.  N. )  X.  Q. ) ) y  <->  ( x  e.  ( N.  X.  N. )  /\  y  e.  Q.  /\  x  ~Q  y ) )
4543, 44bitri 253 . . . . . . . . . . 11  |-  ( x /Q y  <->  ( x  e.  ( N.  X.  N. )  /\  y  e.  Q.  /\  x  ~Q  y ) )
4638, 39, 42, 45syl3anbrc 1192 . . . . . . . . . 10  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  x /Q y )
4746ex 436 . . . . . . . . 9  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  Q. )  ->  (
y  ~Q  x  ->  x /Q y ) )
4847reximdva 2862 . . . . . . . 8  |-  ( x  e.  ( N.  X.  N. )  ->  ( E. y  e.  Q.  y  ~Q  x  ->  E. y  e.  Q.  x /Q y
) )
49 rexex 2844 . . . . . . . 8  |-  ( E. y  e.  Q.  x /Q y  ->  E. y  x /Q y )
5037, 48, 49syl56 35 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  ( E! y  e.  Q.  y  ~Q  x  ->  E. y  x /Q y ) )
518, 50mpd 15 . . . . . 6  |-  ( x  e.  ( N.  X.  N. )  ->  E. y  x /Q y )
52 vex 3048 . . . . . . 7  |-  x  e. 
_V
5352eldm 5032 . . . . . 6  |-  ( x  e.  dom  /Q  <->  E. y  x /Q y )
5451, 53sylibr 216 . . . . 5  |-  ( x  e.  ( N.  X.  N. )  ->  x  e. 
dom  /Q )
5554ssriv 3436 . . . 4  |-  ( N. 
X.  N. )  C_  dom  /Q
5636, 55eqssi 3448 . . 3  |-  dom  /Q  =  ( N.  X.  N. )
57 df-fn 5585 . . 3  |-  ( /Q  Fn  ( N.  X.  N. )  <->  ( Fun  /Q  /\ 
dom  /Q  =  ( N.  X.  N. ) ) )
5829, 56, 57mpbir2an 931 . 2  |-  /Q  Fn  ( N.  X.  N. )
59 rnss 5063 . . . 4  |-  ( /Q  C_  ( ( N.  X.  N. )  X.  Q. )  ->  ran  /Q  C_  ran  ( ( N.  X.  N. )  X.  Q. )
)
603, 59ax-mp 5 . . 3  |-  ran  /Q  C_ 
ran  ( ( N. 
X.  N. )  X.  Q. )
61 rnxpss 5269 . . 3  |-  ran  (
( N.  X.  N. )  X.  Q. )  C_  Q.
6260, 61sstri 3441 . 2  |-  ran  /Q  C_ 
Q.
63 df-f 5586 . 2  |-  ( /Q : ( N.  X.  N. ) --> Q.  <->  ( /Q  Fn  ( N.  X.  N. )  /\  ran  /Q  C_  Q. ) )
6458, 62, 63mpbir2an 931 1  |-  /Q :
( N.  X.  N. )
--> Q.
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 985   A.wal 1442    = wceq 1444   E.wex 1663    e. wcel 1887   E!weu 2299   E*wmo 2300    =/= wne 2622   E.wrex 2738   E!wreu 2739   _Vcvv 3045    i^i cin 3403    C_ wss 3404   (/)c0 3731   class class class wbr 4402    X. cxp 4832   dom cdm 4834   ran crn 4835   Rel wrel 4839   Fun wfun 5576    Fn wfn 5577   -->wf 5578    Er wer 7360   N.cnpi 9269    ~Q ceq 9276   Q.cnq 9277   1Qc1q 9278   /Qcerq 9279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-omul 7187  df-er 7363  df-ni 9297  df-mi 9299  df-lti 9300  df-enq 9336  df-nq 9337  df-erq 9338  df-1nq 9341
This theorem is referenced by:  nqercl  9356  nqerrel  9357  nqerid  9358  addnqf  9373  mulnqf  9374  adderpq  9381  mulerpq  9382  lterpq  9395
  Copyright terms: Public domain W3C validator