MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerf Structured version   Unicode version

Theorem nqerf 9311
Description: Corollary of nqereu 9310: the function  /Q is actually a function. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerf  |-  /Q :
( N.  X.  N. )
--> Q.

Proof of Theorem nqerf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-erq 9294 . . . . . . 7  |-  /Q  =  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. ) )
2 inss2 3704 . . . . . . 7  |-  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. )
)  C_  ( ( N.  X.  N. )  X. 
Q. )
31, 2eqsstri 3519 . . . . . 6  |-  /Q  C_  ( ( N.  X.  N. )  X.  Q. )
4 xpss 5099 . . . . . 6  |-  ( ( N.  X.  N. )  X.  Q. )  C_  ( _V  X.  _V )
53, 4sstri 3498 . . . . 5  |-  /Q  C_  ( _V  X.  _V )
6 df-rel 4996 . . . . 5  |-  ( Rel 
/Q 
<->  /Q  C_  ( _V  X.  _V ) )
75, 6mpbir 209 . . . 4  |-  Rel  /Q
8 nqereu 9310 . . . . . . . 8  |-  ( x  e.  ( N.  X.  N. )  ->  E! y  e.  Q.  y  ~Q  x )
9 df-reu 2800 . . . . . . . . 9  |-  ( E! y  e.  Q.  y  ~Q  x  <->  E! y ( y  e.  Q.  /\  y  ~Q  x ) )
10 eumo 2299 . . . . . . . . 9  |-  ( E! y ( y  e. 
Q.  /\  y  ~Q  x )  ->  E* y ( y  e. 
Q.  /\  y  ~Q  x ) )
119, 10sylbi 195 . . . . . . . 8  |-  ( E! y  e.  Q.  y  ~Q  x  ->  E* y
( y  e.  Q.  /\  y  ~Q  x ) )
128, 11syl 16 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  E* y
( y  e.  Q.  /\  y  ~Q  x ) )
13 moanimv 2338 . . . . . . 7  |-  ( E* y ( x  e.  ( N.  X.  N. )  /\  ( y  e. 
Q.  /\  y  ~Q  x ) )  <->  ( x  e.  ( N.  X.  N. )  ->  E* y ( y  e.  Q.  /\  y  ~Q  x ) ) )
1412, 13mpbir 209 . . . . . 6  |-  E* y
( x  e.  ( N.  X.  N. )  /\  ( y  e.  Q.  /\  y  ~Q  x ) )
153brel 5038 . . . . . . . . 9  |-  ( x /Q y  ->  (
x  e.  ( N. 
X.  N. )  /\  y  e.  Q. ) )
1615simpld 459 . . . . . . . 8  |-  ( x /Q y  ->  x  e.  ( N.  X.  N. ) )
1715simprd 463 . . . . . . . 8  |-  ( x /Q y  ->  y  e.  Q. )
18 enqer 9302 . . . . . . . . . 10  |-  ~Q  Er  ( N.  X.  N. )
1918a1i 11 . . . . . . . . 9  |-  ( x /Q y  ->  ~Q  Er  ( N.  X.  N. )
)
20 inss1 3703 . . . . . . . . . . 11  |-  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. )
)  C_  ~Q
211, 20eqsstri 3519 . . . . . . . . . 10  |-  /Q  C_  ~Q
2221ssbri 4479 . . . . . . . . 9  |-  ( x /Q y  ->  x  ~Q  y )
2319, 22ersym 7325 . . . . . . . 8  |-  ( x /Q y  ->  y  ~Q  x )
2416, 17, 23jca32 535 . . . . . . 7  |-  ( x /Q y  ->  (
x  e.  ( N. 
X.  N. )  /\  (
y  e.  Q.  /\  y  ~Q  x ) ) )
2524moimi 2326 . . . . . 6  |-  ( E* y ( x  e.  ( N.  X.  N. )  /\  ( y  e. 
Q.  /\  y  ~Q  x ) )  ->  E* y  x /Q y )
2614, 25ax-mp 5 . . . . 5  |-  E* y  x /Q y
2726ax-gen 1605 . . . 4  |-  A. x E* y  x /Q y
28 dffun6 5593 . . . 4  |-  ( Fun 
/Q 
<->  ( Rel  /Q  /\  A. x E* y  x /Q y ) )
297, 27, 28mpbir2an 920 . . 3  |-  Fun  /Q
30 dmss 5192 . . . . . 6  |-  ( /Q  C_  ( ( N.  X.  N. )  X.  Q. )  ->  dom  /Q  C_  dom  ( ( N.  X.  N. )  X.  Q. )
)
313, 30ax-mp 5 . . . . 5  |-  dom  /Q  C_ 
dom  ( ( N. 
X.  N. )  X.  Q. )
32 1nq 9309 . . . . . 6  |-  1Q  e.  Q.
33 ne0i 3776 . . . . . 6  |-  ( 1Q  e.  Q.  ->  Q.  =/=  (/) )
34 dmxp 5211 . . . . . 6  |-  ( Q.  =/=  (/)  ->  dom  ( ( N.  X.  N. )  X.  Q. )  =  ( N.  X.  N. )
)
3532, 33, 34mp2b 10 . . . . 5  |-  dom  (
( N.  X.  N. )  X.  Q. )  =  ( N.  X.  N. )
3631, 35sseqtri 3521 . . . 4  |-  dom  /Q  C_  ( N.  X.  N. )
37 reurex 3060 . . . . . . . 8  |-  ( E! y  e.  Q.  y  ~Q  x  ->  E. y  e.  Q.  y  ~Q  x
)
38 simpll 753 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  x  e.  ( N.  X.  N. )
)
39 simplr 755 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  y  e.  Q. )
4018a1i 11 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  ~Q  Er  ( N.  X.  N. ) )
41 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  y  ~Q  x )
4240, 41ersym 7325 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  x  ~Q  y )
431breqi 4443 . . . . . . . . . . . 12  |-  ( x /Q y  <->  x (  ~Q  i^i  ( ( N. 
X.  N. )  X.  Q. ) ) y )
44 brinxp2 5051 . . . . . . . . . . . 12  |-  ( x (  ~Q  i^i  (
( N.  X.  N. )  X.  Q. ) ) y  <->  ( x  e.  ( N.  X.  N. )  /\  y  e.  Q.  /\  x  ~Q  y ) )
4543, 44bitri 249 . . . . . . . . . . 11  |-  ( x /Q y  <->  ( x  e.  ( N.  X.  N. )  /\  y  e.  Q.  /\  x  ~Q  y ) )
4638, 39, 42, 45syl3anbrc 1181 . . . . . . . . . 10  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  x /Q y )
4746ex 434 . . . . . . . . 9  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  Q. )  ->  (
y  ~Q  x  ->  x /Q y ) )
4847reximdva 2918 . . . . . . . 8  |-  ( x  e.  ( N.  X.  N. )  ->  ( E. y  e.  Q.  y  ~Q  x  ->  E. y  e.  Q.  x /Q y
) )
49 rexex 2900 . . . . . . . 8  |-  ( E. y  e.  Q.  x /Q y  ->  E. y  x /Q y )
5037, 48, 49syl56 34 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  ( E! y  e.  Q.  y  ~Q  x  ->  E. y  x /Q y ) )
518, 50mpd 15 . . . . . 6  |-  ( x  e.  ( N.  X.  N. )  ->  E. y  x /Q y )
52 vex 3098 . . . . . . 7  |-  x  e. 
_V
5352eldm 5190 . . . . . 6  |-  ( x  e.  dom  /Q  <->  E. y  x /Q y )
5451, 53sylibr 212 . . . . 5  |-  ( x  e.  ( N.  X.  N. )  ->  x  e. 
dom  /Q )
5554ssriv 3493 . . . 4  |-  ( N. 
X.  N. )  C_  dom  /Q
5636, 55eqssi 3505 . . 3  |-  dom  /Q  =  ( N.  X.  N. )
57 df-fn 5581 . . 3  |-  ( /Q  Fn  ( N.  X.  N. )  <->  ( Fun  /Q  /\ 
dom  /Q  =  ( N.  X.  N. ) ) )
5829, 56, 57mpbir2an 920 . 2  |-  /Q  Fn  ( N.  X.  N. )
59 rnss 5221 . . . 4  |-  ( /Q  C_  ( ( N.  X.  N. )  X.  Q. )  ->  ran  /Q  C_  ran  ( ( N.  X.  N. )  X.  Q. )
)
603, 59ax-mp 5 . . 3  |-  ran  /Q  C_ 
ran  ( ( N. 
X.  N. )  X.  Q. )
61 rnxpss 5429 . . 3  |-  ran  (
( N.  X.  N. )  X.  Q. )  C_  Q.
6260, 61sstri 3498 . 2  |-  ran  /Q  C_ 
Q.
63 df-f 5582 . 2  |-  ( /Q : ( N.  X.  N. ) --> Q.  <->  ( /Q  Fn  ( N.  X.  N. )  /\  ran  /Q  C_  Q. ) )
6458, 62, 63mpbir2an 920 1  |-  /Q :
( N.  X.  N. )
--> Q.
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 974   A.wal 1381    = wceq 1383   E.wex 1599    e. wcel 1804   E!weu 2268   E*wmo 2269    =/= wne 2638   E.wrex 2794   E!wreu 2795   _Vcvv 3095    i^i cin 3460    C_ wss 3461   (/)c0 3770   class class class wbr 4437    X. cxp 4987   dom cdm 4989   ran crn 4990   Rel wrel 4994   Fun wfun 5572    Fn wfn 5573   -->wf 5574    Er wer 7310   N.cnpi 9225    ~Q ceq 9232   Q.cnq 9233   1Qc1q 9234   /Qcerq 9235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-omul 7137  df-er 7313  df-ni 9253  df-mi 9255  df-lti 9256  df-enq 9292  df-nq 9293  df-erq 9294  df-1nq 9297
This theorem is referenced by:  nqercl  9312  nqerrel  9313  nqerid  9314  addnqf  9329  mulnqf  9330  adderpq  9337  mulerpq  9338  lterpq  9351
  Copyright terms: Public domain W3C validator