![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > npex | Structured version Unicode version |
Description: The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
npex |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqex 9196 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | pwex 4576 |
. 2
![]() ![]() ![]() ![]() ![]() |
3 | pssss 3552 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | ad2antlr 726 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | ss2abi 3525 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | df-np 9254 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | df-pw 3963 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 5, 6, 7 | 3sstr4i 3496 |
. 2
![]() ![]() ![]() ![]() ![]() |
9 | 2, 8 | ssexi 4538 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1952 ax-ext 2430 ax-sep 4514 ax-nul 4522 ax-pow 4571 ax-pr 4632 ax-un 6475 ax-inf2 7951 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2264 df-mo 2265 df-clab 2437 df-cleq 2443 df-clel 2446 df-nfc 2601 df-ne 2646 df-ral 2800 df-rex 2801 df-rab 2804 df-v 3073 df-sbc 3288 df-dif 3432 df-un 3434 df-in 3436 df-ss 3443 df-pss 3445 df-nul 3739 df-if 3893 df-pw 3963 df-sn 3979 df-pr 3981 df-tp 3983 df-op 3985 df-uni 4193 df-br 4394 df-opab 4452 df-tr 4487 df-eprel 4733 df-po 4742 df-so 4743 df-fr 4780 df-we 4782 df-ord 4823 df-on 4824 df-lim 4825 df-suc 4826 df-xp 4947 df-om 6580 df-ni 9145 df-nq 9185 df-np 9254 |
This theorem is referenced by: enrex 9341 axcnex 9418 |
Copyright terms: Public domain | W3C validator |