MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  npex Structured version   Unicode version

Theorem npex 9259
Description: The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
npex  |-  P.  e.  _V

Proof of Theorem npex
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqex 9196 . . 3  |-  Q.  e.  _V
21pwex 4576 . 2  |-  ~P Q.  e.  _V
3 pssss 3552 . . . . 5  |-  ( x 
C.  Q.  ->  x  C_  Q. )
43ad2antlr 726 . . . 4  |-  ( ( ( (/)  C.  x  /\  x  C.  Q. )  /\  A. y  e.  x  ( A. z ( z 
<Q  y  ->  z  e.  x )  /\  E. z  e.  x  y  <Q  z ) )  ->  x  C_  Q. )
54ss2abi 3525 . . 3  |-  { x  |  ( ( (/)  C.  x  /\  x  C.  Q. )  /\  A. y  e.  x  ( A. z ( z  <Q 
y  ->  z  e.  x )  /\  E. z  e.  x  y  <Q  z ) ) } 
C_  { x  |  x  C_  Q. }
6 df-np 9254 . . 3  |-  P.  =  { x  |  (
( (/)  C.  x  /\  x  C.  Q. )  /\  A. y  e.  x  ( A. z ( z 
<Q  y  ->  z  e.  x )  /\  E. z  e.  x  y  <Q  z ) ) }
7 df-pw 3963 . . 3  |-  ~P Q.  =  { x  |  x 
C_  Q. }
85, 6, 73sstr4i 3496 . 2  |-  P.  C_  ~P Q.
92, 8ssexi 4538 1  |-  P.  e.  _V
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1368    e. wcel 1758   {cab 2436   A.wral 2795   E.wrex 2796   _Vcvv 3071    C_ wss 3429    C. wpss 3430   (/)c0 3738   ~Pcpw 3961   class class class wbr 4393   Q.cnq 9123    <Q cltq 9129   P.cnp 9130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-inf2 7951
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-sbc 3288  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-br 4394  df-opab 4452  df-tr 4487  df-eprel 4733  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-om 6580  df-ni 9145  df-nq 9185  df-np 9254
This theorem is referenced by:  enrex  9341  axcnex  9418
  Copyright terms: Public domain W3C validator