MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nottru Structured version   Unicode version

Theorem nottru 1406
Description: A  -. identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
nottru  |-  ( -. T.  <-> F.  )

Proof of Theorem nottru
StepHypRef Expression
1 df-fal 1376 . 2  |-  ( F.  <->  -. T.  )
21bicomi 202 1  |-  ( -. T.  <-> F.  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184   T. wtru 1371   F. wfal 1375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-fal 1376
This theorem is referenced by:  trubifal  1409  trunantru  1412  truxortru  1416  falxorfal  1419
  Copyright terms: Public domain W3C validator