MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nottru Structured version   Visualization version   Unicode version

Theorem nottru 1489
Description: A  -. identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
nottru  |-  ( -. T.  <-> F.  )

Proof of Theorem nottru
StepHypRef Expression
1 df-fal 1461 . 2  |-  ( F.  <->  -. T.  )
21bicomi 207 1  |-  ( -. T.  <-> F.  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 189   T. wtru 1456   F. wfal 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190  df-fal 1461
This theorem is referenced by:  trubifalOLD  1494  trunantru  1497  truxortru  1502  falxorfal  1506
  Copyright terms: Public domain W3C validator