MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notrab Structured version   Unicode version

Theorem notrab 3729
Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
notrab  |-  ( A 
\  { x  e.  A  |  ph }
)  =  { x  e.  A  |  -.  ph }
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem notrab
StepHypRef Expression
1 difab 3721 . 2  |-  ( { x  |  x  e.  A }  \  {
x  |  ph }
)  =  { x  |  ( x  e.  A  /\  -.  ph ) }
2 difin 3689 . . 3  |-  ( A 
\  ( A  i^i  { x  |  ph }
) )  =  ( A  \  { x  |  ph } )
3 dfrab3 3727 . . . 4  |-  { x  e.  A  |  ph }  =  ( A  i^i  { x  |  ph }
)
43difeq2i 3560 . . 3  |-  ( A 
\  { x  e.  A  |  ph }
)  =  ( A 
\  ( A  i^i  { x  |  ph }
) )
5 abid2 2544 . . . 4  |-  { x  |  x  e.  A }  =  A
65difeq1i 3559 . . 3  |-  ( { x  |  x  e.  A }  \  {
x  |  ph }
)  =  ( A 
\  { x  | 
ph } )
72, 4, 63eqtr4i 2443 . 2  |-  ( A 
\  { x  e.  A  |  ph }
)  =  ( { x  |  x  e.  A }  \  {
x  |  ph }
)
8 df-rab 2765 . 2  |-  { x  e.  A  |  -.  ph }  =  { x  |  ( x  e.  A  /\  -.  ph ) }
91, 7, 83eqtr4i 2443 1  |-  ( A 
\  { x  e.  A  |  ph }
)  =  { x  e.  A  |  -.  ph }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1407    e. wcel 1844   {cab 2389   {crab 2760    \ cdif 3413    i^i cin 3415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ral 2761  df-rab 2765  df-v 3063  df-dif 3419  df-in 3423
This theorem is referenced by:  rlimrege0  13553  ordtcld1  19993  ordtcld2  19994  lhop1lem  22708  rpvmasumlem  24055  hasheuni  28545  braew  28704
  Copyright terms: Public domain W3C validator