Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  notrab Structured version   Unicode version

Theorem notrab 3729
 Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
notrab
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem notrab
StepHypRef Expression
1 difab 3721 . 2
2 difin 3689 . . 3
3 dfrab3 3727 . . . 4
43difeq2i 3560 . . 3
5 abid2 2544 . . . 4
65difeq1i 3559 . . 3
72, 4, 63eqtr4i 2443 . 2
8 df-rab 2765 . 2
91, 7, 83eqtr4i 2443 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wa 369   wceq 1407   wcel 1844  cab 2389  crab 2760   cdif 3413   cin 3415 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382 This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ral 2761  df-rab 2765  df-v 3063  df-dif 3419  df-in 3423 This theorem is referenced by:  rlimrege0  13553  ordtcld1  19993  ordtcld2  19994  lhop1lem  22708  rpvmasumlem  24055  hasheuni  28545  braew  28704
 Copyright terms: Public domain W3C validator