MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notnoti Structured version   Unicode version

Theorem notnoti 126
Description: Infer double negation. (Contributed by NM, 27-Feb-2008.)
Hypothesis
Ref Expression
negbi.1  |-  ph
Assertion
Ref Expression
notnoti  |-  -.  -.  ph

Proof of Theorem notnoti
StepHypRef Expression
1 negbi.1 . 2  |-  ph
2 notnot1 125 . 2  |-  ( ph  ->  -.  -.  ph )
31, 2ax-mp 5 1  |-  -.  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  nbn3  349  fal  1444  ax6dgen  1873  mdegleb  22920  nextnt  30891  amosym1  30912  ifpdfan2  35853  aisbnaxb  37946
  Copyright terms: Public domain W3C validator