Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  notbinot2 Structured version   Unicode version

Theorem notbinot2 30072
Description: Commutation rule between negation and biimplication. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
Assertion
Ref Expression
notbinot2  |-  ( -.  ( ph  <->  ps )  <->  ( -.  ph  <->  ps ) )

Proof of Theorem notbinot2
StepHypRef Expression
1 nbbn 358 . 2  |-  ( ( -.  ph  <->  ps )  <->  -.  ( ph 
<->  ps ) )
21bicomi 202 1  |-  ( -.  ( ph  <->  ps )  <->  ( -.  ph  <->  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
This theorem is referenced by:  biimpor  30073
  Copyright terms: Public domain W3C validator