HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normval Unicode version

Theorem normval 22579
Description: The value of the norm of a vector in Hilbert space. Definition of norm in [Beran] p. 96. In the literature, the norm of  A is usually written as "||  A ||", but we use function value notation to take advantage of our existing theorems about functions. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
normval  |-  ( A  e.  ~H  ->  ( normh `  A )  =  ( sqr `  ( A  .ih  A ) ) )

Proof of Theorem normval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq12 6049 . . . 4  |-  ( ( x  =  A  /\  x  =  A )  ->  ( x  .ih  x
)  =  ( A 
.ih  A ) )
21anidms 627 . . 3  |-  ( x  =  A  ->  (
x  .ih  x )  =  ( A  .ih  A ) )
32fveq2d 5691 . 2  |-  ( x  =  A  ->  ( sqr `  ( x  .ih  x ) )  =  ( sqr `  ( A  .ih  A ) ) )
4 dfhnorm2 22577 . 2  |-  normh  =  ( x  e.  ~H  |->  ( sqr `  ( x 
.ih  x ) ) )
5 fvex 5701 . 2  |-  ( sqr `  ( A  .ih  A
) )  e.  _V
63, 4, 5fvmpt 5765 1  |-  ( A  e.  ~H  ->  ( normh `  A )  =  ( sqr `  ( A  .ih  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   ` cfv 5413  (class class class)co 6040   sqrcsqr 11993   ~Hchil 22375    .ih csp 22378   normhcno 22379
This theorem is referenced by:  normge0  22581  normgt0  22582  norm0  22583  normsqi  22587  norm-ii-i  22592  norm-iii-i  22594  bcsiALT  22634
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-hfi 22534
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6043  df-hnorm 22424
  Copyright terms: Public domain W3C validator