HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpari Structured version   Unicode version

Theorem normpari 25894
Description: Parallelogram law for norms. Remark 3.4(B) of [Beran] p. 98. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normpar.1  |-  A  e. 
~H
normpar.2  |-  B  e. 
~H
Assertion
Ref Expression
normpari  |-  ( ( ( normh `  ( A  -h  B ) ) ^
2 )  +  ( ( normh `  ( A  +h  B ) ) ^
2 ) )  =  ( ( 2  x.  ( ( normh `  A
) ^ 2 ) )  +  ( 2  x.  ( ( normh `  B ) ^ 2 ) ) )

Proof of Theorem normpari
StepHypRef Expression
1 normpar.1 . . . . 5  |-  A  e. 
~H
2 normpar.2 . . . . 5  |-  B  e. 
~H
31, 2hvsubcli 25761 . . . 4  |-  ( A  -h  B )  e. 
~H
43normsqi 25872 . . 3  |-  ( (
normh `  ( A  -h  B ) ) ^
2 )  =  ( ( A  -h  B
)  .ih  ( A  -h  B ) )
51, 2hvaddcli 25758 . . . 4  |-  ( A  +h  B )  e. 
~H
65normsqi 25872 . . 3  |-  ( (
normh `  ( A  +h  B ) ) ^
2 )  =  ( ( A  +h  B
)  .ih  ( A  +h  B ) )
74, 6oveq12i 6307 . 2  |-  ( ( ( normh `  ( A  -h  B ) ) ^
2 )  +  ( ( normh `  ( A  +h  B ) ) ^
2 ) )  =  ( ( ( A  -h  B )  .ih  ( A  -h  B
) )  +  ( ( A  +h  B
)  .ih  ( A  +h  B ) ) )
81normsqi 25872 . . . . . 6  |-  ( (
normh `  A ) ^
2 )  =  ( A  .ih  A )
98oveq2i 6306 . . . . 5  |-  ( 2  x.  ( ( normh `  A ) ^ 2 ) )  =  ( 2  x.  ( A 
.ih  A ) )
101, 1hicli 25821 . . . . . 6  |-  ( A 
.ih  A )  e.  CC
11102timesi 10668 . . . . 5  |-  ( 2  x.  ( A  .ih  A ) )  =  ( ( A  .ih  A
)  +  ( A 
.ih  A ) )
129, 11eqtri 2496 . . . 4  |-  ( 2  x.  ( ( normh `  A ) ^ 2 ) )  =  ( ( A  .ih  A
)  +  ( A 
.ih  A ) )
132normsqi 25872 . . . . . 6  |-  ( (
normh `  B ) ^
2 )  =  ( B  .ih  B )
1413oveq2i 6306 . . . . 5  |-  ( 2  x.  ( ( normh `  B ) ^ 2 ) )  =  ( 2  x.  ( B 
.ih  B ) )
152, 2hicli 25821 . . . . . 6  |-  ( B 
.ih  B )  e.  CC
16152timesi 10668 . . . . 5  |-  ( 2  x.  ( B  .ih  B ) )  =  ( ( B  .ih  B
)  +  ( B 
.ih  B ) )
1714, 16eqtri 2496 . . . 4  |-  ( 2  x.  ( ( normh `  B ) ^ 2 ) )  =  ( ( B  .ih  B
)  +  ( B 
.ih  B ) )
1812, 17oveq12i 6307 . . 3  |-  ( ( 2  x.  ( (
normh `  A ) ^
2 ) )  +  ( 2  x.  (
( normh `  B ) ^ 2 ) ) )  =  ( ( ( A  .ih  A
)  +  ( A 
.ih  A ) )  +  ( ( B 
.ih  B )  +  ( B  .ih  B
) ) )
191, 2, 1, 2normlem9 25858 . . . . . 6  |-  ( ( A  -h  B ) 
.ih  ( A  -h  B ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  -  (
( A  .ih  B
)  +  ( B 
.ih  A ) ) )
2010, 15addcli 9612 . . . . . . 7  |-  ( ( A  .ih  A )  +  ( B  .ih  B ) )  e.  CC
211, 2hicli 25821 . . . . . . . 8  |-  ( A 
.ih  B )  e.  CC
222, 1hicli 25821 . . . . . . . 8  |-  ( B 
.ih  A )  e.  CC
2321, 22addcli 9612 . . . . . . 7  |-  ( ( A  .ih  B )  +  ( B  .ih  A ) )  e.  CC
2420, 23negsubi 9909 . . . . . 6  |-  ( ( ( A  .ih  A
)  +  ( B 
.ih  B ) )  +  -u ( ( A 
.ih  B )  +  ( B  .ih  A
) ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  -  (
( A  .ih  B
)  +  ( B 
.ih  A ) ) )
2519, 24eqtr4i 2499 . . . . 5  |-  ( ( A  -h  B ) 
.ih  ( A  -h  B ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  -u ( ( A  .ih  B )  +  ( B 
.ih  A ) ) )
261, 2, 1, 2normlem8 25857 . . . . 5  |-  ( ( A  +h  B ) 
.ih  ( A  +h  B ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  B
)  +  ( B 
.ih  A ) ) )
2725, 26oveq12i 6307 . . . 4  |-  ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  +  ( ( A  +h  B )  .ih  ( A  +h  B ) ) )  =  ( ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  -u ( ( A 
.ih  B )  +  ( B  .ih  A
) ) )  +  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  B
)  +  ( B 
.ih  A ) ) ) )
2823negcli 9899 . . . . 5  |-  -u (
( A  .ih  B
)  +  ( B 
.ih  A ) )  e.  CC
2920, 28, 20, 23add42i 9812 . . . 4  |-  ( ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  -u ( ( A 
.ih  B )  +  ( B  .ih  A
) ) )  +  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  B
)  +  ( B 
.ih  A ) ) ) )  =  ( ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  A
)  +  ( B 
.ih  B ) ) )  +  ( ( ( A  .ih  B
)  +  ( B 
.ih  A ) )  +  -u ( ( A 
.ih  B )  +  ( B  .ih  A
) ) ) )
3023negidi 9900 . . . . . 6  |-  ( ( ( A  .ih  B
)  +  ( B 
.ih  A ) )  +  -u ( ( A 
.ih  B )  +  ( B  .ih  A
) ) )  =  0
3130oveq2i 6306 . . . . 5  |-  ( ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )  +  ( ( ( A 
.ih  B )  +  ( B  .ih  A
) )  +  -u ( ( A  .ih  B )  +  ( B 
.ih  A ) ) ) )  =  ( ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  A
)  +  ( B 
.ih  B ) ) )  +  0 )
3220, 20addcli 9612 . . . . . 6  |-  ( ( ( A  .ih  A
)  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )  e.  CC
3332addid1i 9778 . . . . 5  |-  ( ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )  +  0 )  =  ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )
3410, 15, 10, 15add4i 9811 . . . . 5  |-  ( ( ( A  .ih  A
)  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )  =  ( ( ( A 
.ih  A )  +  ( A  .ih  A
) )  +  ( ( B  .ih  B
)  +  ( B 
.ih  B ) ) )
3531, 33, 343eqtri 2500 . . . 4  |-  ( ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )  +  ( ( ( A 
.ih  B )  +  ( B  .ih  A
) )  +  -u ( ( A  .ih  B )  +  ( B 
.ih  A ) ) ) )  =  ( ( ( A  .ih  A )  +  ( A 
.ih  A ) )  +  ( ( B 
.ih  B )  +  ( B  .ih  B
) ) )
3627, 29, 353eqtri 2500 . . 3  |-  ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  +  ( ( A  +h  B )  .ih  ( A  +h  B ) ) )  =  ( ( ( A  .ih  A
)  +  ( A 
.ih  A ) )  +  ( ( B 
.ih  B )  +  ( B  .ih  B
) ) )
3718, 36eqtr4i 2499 . 2  |-  ( ( 2  x.  ( (
normh `  A ) ^
2 ) )  +  ( 2  x.  (
( normh `  B ) ^ 2 ) ) )  =  ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  +  ( ( A  +h  B )  .ih  ( A  +h  B ) ) )
387, 37eqtr4i 2499 1  |-  ( ( ( normh `  ( A  -h  B ) ) ^
2 )  +  ( ( normh `  ( A  +h  B ) ) ^
2 ) )  =  ( ( 2  x.  ( ( normh `  A
) ^ 2 ) )  +  ( 2  x.  ( ( normh `  B ) ^ 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    e. wcel 1767   ` cfv 5594  (class class class)co 6295   0cc0 9504    + caddc 9507    x. cmul 9509    - cmin 9817   -ucneg 9818   2c2 10597   ^cexp 12146   ~Hchil 25659    +h cva 25660    .ih csp 25662   normhcno 25663    -h cmv 25665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-hfvadd 25740  ax-hv0cl 25743  ax-hfvmul 25745  ax-hvmul0 25750  ax-hfi 25819  ax-his1 25822  ax-his2 25823  ax-his3 25824  ax-his4 25825
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-hnorm 25708  df-hvsub 25711
This theorem is referenced by:  normpar  25895  normpar2i  25896
  Copyright terms: Public domain W3C validator