HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3difi Structured version   Unicode version

Theorem norm3difi 24702
Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm3dif.1  |-  A  e. 
~H
norm3dif.2  |-  B  e. 
~H
norm3dif.3  |-  C  e. 
~H
Assertion
Ref Expression
norm3difi  |-  ( normh `  ( A  -h  B
) )  <_  (
( normh `  ( A  -h  C ) )  +  ( normh `  ( C  -h  B ) ) )

Proof of Theorem norm3difi
StepHypRef Expression
1 norm3dif.1 . . . . 5  |-  A  e. 
~H
2 norm3dif.2 . . . . 5  |-  B  e. 
~H
31, 2hvsubvali 24575 . . . 4  |-  ( A  -h  B )  =  ( A  +h  ( -u 1  .h  B ) )
4 norm3dif.3 . . . . . . 7  |-  C  e. 
~H
51, 4hvsubvali 24575 . . . . . 6  |-  ( A  -h  C )  =  ( A  +h  ( -u 1  .h  C ) )
64, 2hvsubvali 24575 . . . . . 6  |-  ( C  -h  B )  =  ( C  +h  ( -u 1  .h  B ) )
75, 6oveq12i 6213 . . . . 5  |-  ( ( A  -h  C )  +h  ( C  -h  B ) )  =  ( ( A  +h  ( -u 1  .h  C
) )  +h  ( C  +h  ( -u 1  .h  B ) ) )
8 neg1cn 10537 . . . . . . 7  |-  -u 1  e.  CC
98, 4hvmulcli 24569 . . . . . 6  |-  ( -u
1  .h  C )  e.  ~H
108, 2hvmulcli 24569 . . . . . . 7  |-  ( -u
1  .h  B )  e.  ~H
114, 10hvaddcli 24573 . . . . . 6  |-  ( C  +h  ( -u 1  .h  B ) )  e. 
~H
121, 9, 11hvassi 24608 . . . . 5  |-  ( ( A  +h  ( -u
1  .h  C ) )  +h  ( C  +h  ( -u 1  .h  B ) ) )  =  ( A  +h  ( ( -u 1  .h  C )  +h  ( C  +h  ( -u 1  .h  B ) ) ) )
139, 4, 10hvassi 24608 . . . . . . 7  |-  ( ( ( -u 1  .h  C )  +h  C
)  +h  ( -u
1  .h  B ) )  =  ( (
-u 1  .h  C
)  +h  ( C  +h  ( -u 1  .h  B ) ) )
149, 4hvcomi 24574 . . . . . . . . . 10  |-  ( (
-u 1  .h  C
)  +h  C )  =  ( C  +h  ( -u 1  .h  C
) )
154, 4hvsubvali 24575 . . . . . . . . . 10  |-  ( C  -h  C )  =  ( C  +h  ( -u 1  .h  C ) )
16 hvsubid 24581 . . . . . . . . . . 11  |-  ( C  e.  ~H  ->  ( C  -h  C )  =  0h )
174, 16ax-mp 5 . . . . . . . . . 10  |-  ( C  -h  C )  =  0h
1814, 15, 173eqtr2i 2489 . . . . . . . . 9  |-  ( (
-u 1  .h  C
)  +h  C )  =  0h
1918oveq1i 6211 . . . . . . . 8  |-  ( ( ( -u 1  .h  C )  +h  C
)  +h  ( -u
1  .h  B ) )  =  ( 0h 
+h  ( -u 1  .h  B ) )
20 ax-hv0cl 24558 . . . . . . . . 9  |-  0h  e.  ~H
2120, 10hvcomi 24574 . . . . . . . 8  |-  ( 0h 
+h  ( -u 1  .h  B ) )  =  ( ( -u 1  .h  B )  +h  0h )
22 ax-hvaddid 24559 . . . . . . . . 9  |-  ( (
-u 1  .h  B
)  e.  ~H  ->  ( ( -u 1  .h  B )  +h  0h )  =  ( -u 1  .h  B ) )
2310, 22ax-mp 5 . . . . . . . 8  |-  ( (
-u 1  .h  B
)  +h  0h )  =  ( -u 1  .h  B )
2419, 21, 233eqtri 2487 . . . . . . 7  |-  ( ( ( -u 1  .h  C )  +h  C
)  +h  ( -u
1  .h  B ) )  =  ( -u
1  .h  B )
2513, 24eqtr3i 2485 . . . . . 6  |-  ( (
-u 1  .h  C
)  +h  ( C  +h  ( -u 1  .h  B ) ) )  =  ( -u 1  .h  B )
2625oveq2i 6212 . . . . 5  |-  ( A  +h  ( ( -u
1  .h  C )  +h  ( C  +h  ( -u 1  .h  B
) ) ) )  =  ( A  +h  ( -u 1  .h  B
) )
277, 12, 263eqtri 2487 . . . 4  |-  ( ( A  -h  C )  +h  ( C  -h  B ) )  =  ( A  +h  ( -u 1  .h  B ) )
283, 27eqtr4i 2486 . . 3  |-  ( A  -h  B )  =  ( ( A  -h  C )  +h  ( C  -h  B ) )
2928fveq2i 5803 . 2  |-  ( normh `  ( A  -h  B
) )  =  (
normh `  ( ( A  -h  C )  +h  ( C  -h  B
) ) )
301, 4hvsubcli 24576 . . 3  |-  ( A  -h  C )  e. 
~H
314, 2hvsubcli 24576 . . 3  |-  ( C  -h  B )  e. 
~H
3230, 31norm-ii-i 24692 . 2  |-  ( normh `  ( ( A  -h  C )  +h  ( C  -h  B ) ) )  <_  ( ( normh `  ( A  -h  C ) )  +  ( normh `  ( C  -h  B ) ) )
3329, 32eqbrtri 4420 1  |-  ( normh `  ( A  -h  B
) )  <_  (
( normh `  ( A  -h  C ) )  +  ( normh `  ( C  -h  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1370    e. wcel 1758   class class class wbr 4401   ` cfv 5527  (class class class)co 6201   1c1 9395    + caddc 9397    <_ cle 9531   -ucneg 9708   ~Hchil 24474    +h cva 24475    .h csm 24476   normhcno 24478   0hc0v 24479    -h cmv 24480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471  ax-pre-sup 9472  ax-hfvadd 24555  ax-hvcom 24556  ax-hvass 24557  ax-hv0cl 24558  ax-hvaddid 24559  ax-hfvmul 24560  ax-hvmulid 24561  ax-hvmulass 24562  ax-hvdistr2 24564  ax-hvmul0 24565  ax-hfi 24634  ax-his1 24637  ax-his2 24638  ax-his3 24639  ax-his4 24640
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-2nd 6689  df-recs 6943  df-rdg 6977  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-sup 7803  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-div 10106  df-nn 10435  df-2 10492  df-3 10493  df-4 10494  df-n0 10692  df-z 10759  df-uz 10974  df-rp 11104  df-seq 11925  df-exp 11984  df-cj 12707  df-re 12708  df-im 12709  df-sqr 12843  df-abs 12844  df-hnorm 24523  df-hvsub 24526
This theorem is referenced by:  norm3adifii  24703  norm3lem  24704  norm3dif  24705
  Copyright terms: Public domain W3C validator