Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noreson Structured version   Visualization version   Unicode version

Theorem noreson 30618
Description: The restriction of a surreal to an ordinal is still a surreal. (Contributed by Scott Fenton, 4-Sep-2011.)
Assertion
Ref Expression
noreson  |-  ( ( A  e.  No  /\  B  e.  On )  ->  ( A  |`  B )  e.  No )

Proof of Theorem noreson
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elno 30604 . . 3  |-  ( A  e.  No  <->  E. x  e.  On  A : x --> { 1o ,  2o } )
2 onin 5461 . . . . . . . 8  |-  ( ( x  e.  On  /\  B  e.  On )  ->  ( x  i^i  B
)  e.  On )
3 fresin 5764 . . . . . . . 8  |-  ( A : x --> { 1o ,  2o }  ->  ( A  |`  B ) : ( x  i^i  B
) --> { 1o ,  2o } )
4 feq2 5721 . . . . . . . . 9  |-  ( y  =  ( x  i^i 
B )  ->  (
( A  |`  B ) : y --> { 1o ,  2o }  <->  ( A  |`  B ) : ( x  i^i  B ) --> { 1o ,  2o } ) )
54rspcev 3136 . . . . . . . 8  |-  ( ( ( x  i^i  B
)  e.  On  /\  ( A  |`  B ) : ( x  i^i 
B ) --> { 1o ,  2o } )  ->  E. y  e.  On  ( A  |`  B ) : y --> { 1o ,  2o } )
62, 3, 5syl2an 485 . . . . . . 7  |-  ( ( ( x  e.  On  /\  B  e.  On )  /\  A : x --> { 1o ,  2o } )  ->  E. y  e.  On  ( A  |`  B ) : y --> { 1o ,  2o } )
76an32s 821 . . . . . 6  |-  ( ( ( x  e.  On  /\  A : x --> { 1o ,  2o } )  /\  B  e.  On )  ->  E. y  e.  On  ( A  |`  B ) : y --> { 1o ,  2o } )
87ex 441 . . . . 5  |-  ( ( x  e.  On  /\  A : x --> { 1o ,  2o } )  -> 
( B  e.  On  ->  E. y  e.  On  ( A  |`  B ) : y --> { 1o ,  2o } ) )
98rexlimiva 2868 . . . 4  |-  ( E. x  e.  On  A : x --> { 1o ,  2o }  ->  ( B  e.  On  ->  E. y  e.  On  ( A  |`  B ) : y --> { 1o ,  2o } ) )
109imp 436 . . 3  |-  ( ( E. x  e.  On  A : x --> { 1o ,  2o }  /\  B  e.  On )  ->  E. y  e.  On  ( A  |`  B ) : y --> { 1o ,  2o } )
111, 10sylanb 480 . 2  |-  ( ( A  e.  No  /\  B  e.  On )  ->  E. y  e.  On  ( A  |`  B ) : y --> { 1o ,  2o } )
12 elno 30604 . 2  |-  ( ( A  |`  B )  e.  No  <->  E. y  e.  On  ( A  |`  B ) : y --> { 1o ,  2o } )
1311, 12sylibr 217 1  |-  ( ( A  e.  No  /\  B  e.  On )  ->  ( A  |`  B )  e.  No )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    e. wcel 1904   E.wrex 2757    i^i cin 3389   {cpr 3961    |` cres 4841   Oncon0 5430   -->wf 5585   1oc1o 7193   2oc2o 7194   Nocsur 30598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-ord 5433  df-on 5434  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-no 30601
This theorem is referenced by:  sltres  30622
  Copyright terms: Public domain W3C validator