MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfepOLD Structured version   Unicode version

Theorem noinfepOLD 8068
Description: TODO-NM: can this theorem be removed? Using the Axiom of Regularity in the form zfregfr 8020, show that there are no infinite descending  e. -chains. Proposition 7.34 of [TakeutiZaring] p. 44. (Contributed by NM, 26-Jan-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
noinfepOLD  |-  ( F  Fn  om  ->  E. x  e.  om  -.  ( F `
 suc  x )  e.  ( F `  x
) )
Distinct variable group:    x, F

Proof of Theorem noinfepOLD
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fndm 5662 . . . . 5  |-  ( F  Fn  om  ->  dom  F  =  om )
2 omex 8051 . . . . 5  |-  om  e.  _V
31, 2syl6eqel 2550 . . . 4  |-  ( F  Fn  om  ->  dom  F  e.  _V )
4 fnfun 5660 . . . 4  |-  ( F  Fn  om  ->  Fun  F )
5 funrnex 6740 . . . 4  |-  ( dom 
F  e.  _V  ->  ( Fun  F  ->  ran  F  e.  _V ) )
63, 4, 5sylc 60 . . 3  |-  ( F  Fn  om  ->  ran  F  e.  _V )
7 peano1 6692 . . . . . . 7  |-  (/)  e.  om
8 eleq2 2527 . . . . . . 7  |-  ( dom 
F  =  om  ->  (
(/)  e.  dom  F  <->  (/)  e.  om ) )
97, 8mpbiri 233 . . . . . 6  |-  ( dom 
F  =  om  ->  (/)  e.  dom  F )
10 ne0i 3789 . . . . . 6  |-  ( (/)  e.  dom  F  ->  dom  F  =/=  (/) )
119, 10syl 16 . . . . 5  |-  ( dom 
F  =  om  ->  dom 
F  =/=  (/) )
12 dm0rn0 5208 . . . . . 6  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
1312necon3bii 2722 . . . . 5  |-  ( dom 
F  =/=  (/)  <->  ran  F  =/=  (/) )
1411, 13sylib 196 . . . 4  |-  ( dom 
F  =  om  ->  ran 
F  =/=  (/) )
151, 14syl 16 . . 3  |-  ( F  Fn  om  ->  ran  F  =/=  (/) )
16 zfregfr 8020 . . . 4  |-  _E  Fr  ran  F
17 ssid 3508 . . . . 5  |-  ran  F  C_ 
ran  F
18 fri 4830 . . . . 5  |-  ( ( ( ran  F  e. 
_V  /\  _E  Fr  ran  F )  /\  ( ran  F  C_  ran  F  /\  ran  F  =/=  (/) ) )  ->  E. y  e.  ran  F A. z  e.  ran  F  -.  z  _E  y
)
1917, 18mpanr1 681 . . . 4  |-  ( ( ( ran  F  e. 
_V  /\  _E  Fr  ran  F )  /\  ran  F  =/=  (/) )  ->  E. y  e.  ran  F A. z  e.  ran  F  -.  z  _E  y )
2016, 19mpanl2 679 . . 3  |-  ( ( ran  F  e.  _V  /\ 
ran  F  =/=  (/) )  ->  E. y  e.  ran  F A. z  e.  ran  F  -.  z  _E  y
)
216, 15, 20syl2anc 659 . 2  |-  ( F  Fn  om  ->  E. y  e.  ran  F A. z  e.  ran  F  -.  z  _E  y )
22 fvelrnb 5895 . . . . . . 7  |-  ( F  Fn  om  ->  (
y  e.  ran  F  <->  E. x  e.  om  ( F `  x )  =  y ) )
2322adantr 463 . . . . . 6  |-  ( ( F  Fn  om  /\  A. z  e.  ran  F  -.  z  _E  y
)  ->  ( y  e.  ran  F  <->  E. x  e.  om  ( F `  x )  =  y ) )
24 peano2 6693 . . . . . . . . 9  |-  ( x  e.  om  ->  suc  x  e.  om )
25 fnfvelrn 6004 . . . . . . . . . . . 12  |-  ( ( F  Fn  om  /\  suc  x  e.  om )  ->  ( F `  suc  x )  e.  ran  F )
2625adantlr 712 . . . . . . . . . . 11  |-  ( ( ( F  Fn  om  /\ 
A. z  e.  ran  F  -.  z  _E  y
)  /\  suc  x  e. 
om )  ->  ( F `  suc  x )  e.  ran  F )
27 simplr 753 . . . . . . . . . . 11  |-  ( ( ( F  Fn  om  /\ 
A. z  e.  ran  F  -.  z  _E  y
)  /\  suc  x  e. 
om )  ->  A. z  e.  ran  F  -.  z  _E  y )
2826, 27jca 530 . . . . . . . . . 10  |-  ( ( ( F  Fn  om  /\ 
A. z  e.  ran  F  -.  z  _E  y
)  /\  suc  x  e. 
om )  ->  (
( F `  suc  x )  e.  ran  F  /\  A. z  e. 
ran  F  -.  z  _E  y ) )
29 epel 4783 . . . . . . . . . . . . . 14  |-  ( z  _E  y  <->  z  e.  y )
30 eleq1 2526 . . . . . . . . . . . . . 14  |-  ( z  =  ( F `  suc  x )  ->  (
z  e.  y  <->  ( F `  suc  x )  e.  y ) )
3129, 30syl5bb 257 . . . . . . . . . . . . 13  |-  ( z  =  ( F `  suc  x )  ->  (
z  _E  y  <->  ( F `  suc  x )  e.  y ) )
3231notbid 292 . . . . . . . . . . . 12  |-  ( z  =  ( F `  suc  x )  ->  ( -.  z  _E  y  <->  -.  ( F `  suc  x )  e.  y ) )
3332rspcva 3205 . . . . . . . . . . 11  |-  ( ( ( F `  suc  x )  e.  ran  F  /\  A. z  e. 
ran  F  -.  z  _E  y )  ->  -.  ( F `  suc  x
)  e.  y )
34 eleq2 2527 . . . . . . . . . . . 12  |-  ( ( F `  x )  =  y  ->  (
( F `  suc  x )  e.  ( F `  x )  <-> 
( F `  suc  x )  e.  y ) )
3534notbid 292 . . . . . . . . . . 11  |-  ( ( F `  x )  =  y  ->  ( -.  ( F `  suc  x )  e.  ( F `  x )  <->  -.  ( F `  suc  x )  e.  y ) )
3633, 35syl5ibr 221 . . . . . . . . . 10  |-  ( ( F `  x )  =  y  ->  (
( ( F `  suc  x )  e.  ran  F  /\  A. z  e. 
ran  F  -.  z  _E  y )  ->  -.  ( F `  suc  x
)  e.  ( F `
 x ) ) )
3728, 36syl5 32 . . . . . . . . 9  |-  ( ( F `  x )  =  y  ->  (
( ( F  Fn  om 
/\  A. z  e.  ran  F  -.  z  _E  y
)  /\  suc  x  e. 
om )  ->  -.  ( F `  suc  x
)  e.  ( F `
 x ) ) )
3824, 37sylan2i 653 . . . . . . . 8  |-  ( ( F `  x )  =  y  ->  (
( ( F  Fn  om 
/\  A. z  e.  ran  F  -.  z  _E  y
)  /\  x  e.  om )  ->  -.  ( F `  suc  x )  e.  ( F `  x ) ) )
3938com12 31 . . . . . . 7  |-  ( ( ( F  Fn  om  /\ 
A. z  e.  ran  F  -.  z  _E  y
)  /\  x  e.  om )  ->  ( ( F `  x )  =  y  ->  -.  ( F `  suc  x )  e.  ( F `  x ) ) )
4039reximdva 2929 . . . . . 6  |-  ( ( F  Fn  om  /\  A. z  e.  ran  F  -.  z  _E  y
)  ->  ( E. x  e.  om  ( F `  x )  =  y  ->  E. x  e.  om  -.  ( F `
 suc  x )  e.  ( F `  x
) ) )
4123, 40sylbid 215 . . . . 5  |-  ( ( F  Fn  om  /\  A. z  e.  ran  F  -.  z  _E  y
)  ->  ( y  e.  ran  F  ->  E. x  e.  om  -.  ( F `
 suc  x )  e.  ( F `  x
) ) )
4241ex 432 . . . 4  |-  ( F  Fn  om  ->  ( A. z  e.  ran  F  -.  z  _E  y  ->  ( y  e.  ran  F  ->  E. x  e.  om  -.  ( F `  suc  x )  e.  ( F `  x ) ) ) )
4342com23 78 . . 3  |-  ( F  Fn  om  ->  (
y  e.  ran  F  ->  ( A. z  e. 
ran  F  -.  z  _E  y  ->  E. x  e.  om  -.  ( F `
 suc  x )  e.  ( F `  x
) ) ) )
4443rexlimdv 2944 . 2  |-  ( F  Fn  om  ->  ( E. y  e.  ran  F A. z  e.  ran  F  -.  z  _E  y  ->  E. x  e.  om  -.  ( F `  suc  x )  e.  ( F `  x ) ) )
4521, 44mpd 15 1  |-  ( F  Fn  om  ->  E. x  e.  om  -.  ( F `
 suc  x )  e.  ( F `  x
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   _Vcvv 3106    C_ wss 3461   (/)c0 3783   class class class wbr 4439    _E cep 4778    Fr wfr 4824   suc csuc 4869   dom cdm 4988   ran crn 4989   Fun wfun 5564    Fn wfn 5565   ` cfv 5570   omcom 6673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pr 4676  ax-un 6565  ax-reg 8010  ax-inf2 8049
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-om 6674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator