MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfepOLD Structured version   Unicode version

Theorem noinfepOLD 8073
Description: Using the Axiom of Regularity in the form zfregfr 8025, show that there are no infinite descending 
e.-chains. Proposition 7.34 of [TakeutiZaring] p. 44. (Contributed by NM, 26-Jan-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
noinfepOLD  |-  ( F  Fn  om  ->  E. x  e.  om  -.  ( F `
 suc  x )  e.  ( F `  x
) )
Distinct variable group:    x, F

Proof of Theorem noinfepOLD
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fndm 5678 . . . . 5  |-  ( F  Fn  om  ->  dom  F  =  om )
2 omex 8056 . . . . 5  |-  om  e.  _V
31, 2syl6eqel 2563 . . . 4  |-  ( F  Fn  om  ->  dom  F  e.  _V )
4 fnfun 5676 . . . 4  |-  ( F  Fn  om  ->  Fun  F )
5 funrnex 6748 . . . 4  |-  ( dom 
F  e.  _V  ->  ( Fun  F  ->  ran  F  e.  _V ) )
63, 4, 5sylc 60 . . 3  |-  ( F  Fn  om  ->  ran  F  e.  _V )
7 peano1 6697 . . . . . . 7  |-  (/)  e.  om
8 eleq2 2540 . . . . . . 7  |-  ( dom 
F  =  om  ->  (
(/)  e.  dom  F  <->  (/)  e.  om ) )
97, 8mpbiri 233 . . . . . 6  |-  ( dom 
F  =  om  ->  (/)  e.  dom  F )
10 ne0i 3791 . . . . . 6  |-  ( (/)  e.  dom  F  ->  dom  F  =/=  (/) )
119, 10syl 16 . . . . 5  |-  ( dom 
F  =  om  ->  dom 
F  =/=  (/) )
12 dm0rn0 5217 . . . . . 6  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
1312necon3bii 2735 . . . . 5  |-  ( dom 
F  =/=  (/)  <->  ran  F  =/=  (/) )
1411, 13sylib 196 . . . 4  |-  ( dom 
F  =  om  ->  ran 
F  =/=  (/) )
151, 14syl 16 . . 3  |-  ( F  Fn  om  ->  ran  F  =/=  (/) )
16 zfregfr 8025 . . . 4  |-  _E  Fr  ran  F
17 ssid 3523 . . . . 5  |-  ran  F  C_ 
ran  F
18 fri 4841 . . . . 5  |-  ( ( ( ran  F  e. 
_V  /\  _E  Fr  ran  F )  /\  ( ran  F  C_  ran  F  /\  ran  F  =/=  (/) ) )  ->  E. y  e.  ran  F A. z  e.  ran  F  -.  z  _E  y
)
1917, 18mpanr1 683 . . . 4  |-  ( ( ( ran  F  e. 
_V  /\  _E  Fr  ran  F )  /\  ran  F  =/=  (/) )  ->  E. y  e.  ran  F A. z  e.  ran  F  -.  z  _E  y )
2016, 19mpanl2 681 . . 3  |-  ( ( ran  F  e.  _V  /\ 
ran  F  =/=  (/) )  ->  E. y  e.  ran  F A. z  e.  ran  F  -.  z  _E  y
)
216, 15, 20syl2anc 661 . 2  |-  ( F  Fn  om  ->  E. y  e.  ran  F A. z  e.  ran  F  -.  z  _E  y )
22 fvelrnb 5913 . . . . . . 7  |-  ( F  Fn  om  ->  (
y  e.  ran  F  <->  E. x  e.  om  ( F `  x )  =  y ) )
2322adantr 465 . . . . . 6  |-  ( ( F  Fn  om  /\  A. z  e.  ran  F  -.  z  _E  y
)  ->  ( y  e.  ran  F  <->  E. x  e.  om  ( F `  x )  =  y ) )
24 peano2 6698 . . . . . . . . 9  |-  ( x  e.  om  ->  suc  x  e.  om )
25 fnfvelrn 6016 . . . . . . . . . . . 12  |-  ( ( F  Fn  om  /\  suc  x  e.  om )  ->  ( F `  suc  x )  e.  ran  F )
2625adantlr 714 . . . . . . . . . . 11  |-  ( ( ( F  Fn  om  /\ 
A. z  e.  ran  F  -.  z  _E  y
)  /\  suc  x  e. 
om )  ->  ( F `  suc  x )  e.  ran  F )
27 simplr 754 . . . . . . . . . . 11  |-  ( ( ( F  Fn  om  /\ 
A. z  e.  ran  F  -.  z  _E  y
)  /\  suc  x  e. 
om )  ->  A. z  e.  ran  F  -.  z  _E  y )
2826, 27jca 532 . . . . . . . . . 10  |-  ( ( ( F  Fn  om  /\ 
A. z  e.  ran  F  -.  z  _E  y
)  /\  suc  x  e. 
om )  ->  (
( F `  suc  x )  e.  ran  F  /\  A. z  e. 
ran  F  -.  z  _E  y ) )
29 epel 4794 . . . . . . . . . . . . . 14  |-  ( z  _E  y  <->  z  e.  y )
30 eleq1 2539 . . . . . . . . . . . . . 14  |-  ( z  =  ( F `  suc  x )  ->  (
z  e.  y  <->  ( F `  suc  x )  e.  y ) )
3129, 30syl5bb 257 . . . . . . . . . . . . 13  |-  ( z  =  ( F `  suc  x )  ->  (
z  _E  y  <->  ( F `  suc  x )  e.  y ) )
3231notbid 294 . . . . . . . . . . . 12  |-  ( z  =  ( F `  suc  x )  ->  ( -.  z  _E  y  <->  -.  ( F `  suc  x )  e.  y ) )
3332rspcva 3212 . . . . . . . . . . 11  |-  ( ( ( F `  suc  x )  e.  ran  F  /\  A. z  e. 
ran  F  -.  z  _E  y )  ->  -.  ( F `  suc  x
)  e.  y )
34 eleq2 2540 . . . . . . . . . . . 12  |-  ( ( F `  x )  =  y  ->  (
( F `  suc  x )  e.  ( F `  x )  <-> 
( F `  suc  x )  e.  y ) )
3534notbid 294 . . . . . . . . . . 11  |-  ( ( F `  x )  =  y  ->  ( -.  ( F `  suc  x )  e.  ( F `  x )  <->  -.  ( F `  suc  x )  e.  y ) )
3633, 35syl5ibr 221 . . . . . . . . . 10  |-  ( ( F `  x )  =  y  ->  (
( ( F `  suc  x )  e.  ran  F  /\  A. z  e. 
ran  F  -.  z  _E  y )  ->  -.  ( F `  suc  x
)  e.  ( F `
 x ) ) )
3728, 36syl5 32 . . . . . . . . 9  |-  ( ( F `  x )  =  y  ->  (
( ( F  Fn  om 
/\  A. z  e.  ran  F  -.  z  _E  y
)  /\  suc  x  e. 
om )  ->  -.  ( F `  suc  x
)  e.  ( F `
 x ) ) )
3824, 37sylan2i 655 . . . . . . . 8  |-  ( ( F `  x )  =  y  ->  (
( ( F  Fn  om 
/\  A. z  e.  ran  F  -.  z  _E  y
)  /\  x  e.  om )  ->  -.  ( F `  suc  x )  e.  ( F `  x ) ) )
3938com12 31 . . . . . . 7  |-  ( ( ( F  Fn  om  /\ 
A. z  e.  ran  F  -.  z  _E  y
)  /\  x  e.  om )  ->  ( ( F `  x )  =  y  ->  -.  ( F `  suc  x )  e.  ( F `  x ) ) )
4039reximdva 2938 . . . . . 6  |-  ( ( F  Fn  om  /\  A. z  e.  ran  F  -.  z  _E  y
)  ->  ( E. x  e.  om  ( F `  x )  =  y  ->  E. x  e.  om  -.  ( F `
 suc  x )  e.  ( F `  x
) ) )
4123, 40sylbid 215 . . . . 5  |-  ( ( F  Fn  om  /\  A. z  e.  ran  F  -.  z  _E  y
)  ->  ( y  e.  ran  F  ->  E. x  e.  om  -.  ( F `
 suc  x )  e.  ( F `  x
) ) )
4241ex 434 . . . 4  |-  ( F  Fn  om  ->  ( A. z  e.  ran  F  -.  z  _E  y  ->  ( y  e.  ran  F  ->  E. x  e.  om  -.  ( F `  suc  x )  e.  ( F `  x ) ) ) )
4342com23 78 . . 3  |-  ( F  Fn  om  ->  (
y  e.  ran  F  ->  ( A. z  e. 
ran  F  -.  z  _E  y  ->  E. x  e.  om  -.  ( F `
 suc  x )  e.  ( F `  x
) ) ) )
4443rexlimdv 2953 . 2  |-  ( F  Fn  om  ->  ( E. y  e.  ran  F A. z  e.  ran  F  -.  z  _E  y  ->  E. x  e.  om  -.  ( F `  suc  x )  e.  ( F `  x ) ) )
4521, 44mpd 15 1  |-  ( F  Fn  om  ->  E. x  e.  om  -.  ( F `
 suc  x )  e.  ( F `  x
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   _Vcvv 3113    C_ wss 3476   (/)c0 3785   class class class wbr 4447    _E cep 4789    Fr wfr 4835   suc csuc 4880   dom cdm 4999   ran crn 5000   Fun wfun 5580    Fn wfn 5581   ` cfv 5586   omcom 6678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6574  ax-reg 8014  ax-inf2 8054
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-om 6679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator