MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfep Structured version   Unicode version

Theorem noinfep 8093
Description: Using the Axiom of Regularity in the form zfregfr 8046, show that there are no infinite descending 
e.-chains. Proposition 7.34 of [TakeutiZaring] p. 44. (Contributed by NM, 26-Jan-2006.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
noinfep  |-  E. x  e.  om  ( F `  suc  x )  e/  ( F `  x )
Distinct variable group:    x, F

Proof of Theorem noinfep
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 8077 . . . . 5  |-  om  e.  _V
21mptex 6144 . . . 4  |-  ( w  e.  om  |->  ( F `
 w ) )  e.  _V
32rnex 6733 . . 3  |-  ran  (
w  e.  om  |->  ( F `  w ) )  e.  _V
4 zfregfr 8046 . . 3  |-  _E  Fr  ran  ( w  e.  om  |->  ( F `  w ) )
5 ssid 3518 . . 3  |-  ran  (
w  e.  om  |->  ( F `  w ) )  C_  ran  ( w  e.  om  |->  ( F `
 w ) )
6 dmmptg 5510 . . . . . 6  |-  ( A. w  e.  om  ( F `  w )  e.  _V  ->  dom  ( w  e.  om  |->  ( F `
 w ) )  =  om )
7 fvex 5882 . . . . . . 7  |-  ( F `
 w )  e. 
_V
87a1i 11 . . . . . 6  |-  ( w  e.  om  ->  ( F `  w )  e.  _V )
96, 8mprg 2820 . . . . 5  |-  dom  (
w  e.  om  |->  ( F `  w ) )  =  om
10 peano1 6718 . . . . . 6  |-  (/)  e.  om
1110ne0ii 3800 . . . . 5  |-  om  =/=  (/)
129, 11eqnetri 2753 . . . 4  |-  dom  (
w  e.  om  |->  ( F `  w ) )  =/=  (/)
13 dm0rn0 5229 . . . . 5  |-  ( dom  ( w  e.  om  |->  ( F `  w ) )  =  (/)  <->  ran  ( w  e.  om  |->  ( F `
 w ) )  =  (/) )
1413necon3bii 2725 . . . 4  |-  ( dom  ( w  e.  om  |->  ( F `  w ) )  =/=  (/)  <->  ran  ( w  e.  om  |->  ( F `
 w ) )  =/=  (/) )
1512, 14mpbi 208 . . 3  |-  ran  (
w  e.  om  |->  ( F `  w ) )  =/=  (/)
16 fri 4850 . . 3  |-  ( ( ( ran  ( w  e.  om  |->  ( F `
 w ) )  e.  _V  /\  _E  Fr  ran  ( w  e. 
om  |->  ( F `  w ) ) )  /\  ( ran  (
w  e.  om  |->  ( F `  w ) )  C_  ran  ( w  e.  om  |->  ( F `
 w ) )  /\  ran  ( w  e.  om  |->  ( F `
 w ) )  =/=  (/) ) )  ->  E. y  e.  ran  ( w  e.  om  |->  ( F `  w ) ) A. z  e. 
ran  ( w  e. 
om  |->  ( F `  w ) )  -.  z  _E  y )
173, 4, 5, 15, 16mp4an 673 . 2  |-  E. y  e.  ran  ( w  e. 
om  |->  ( F `  w ) ) A. z  e.  ran  ( w  e.  om  |->  ( F `
 w ) )  -.  z  _E  y
18 eqid 2457 . . . . . . 7  |-  ( w  e.  om  |->  ( F `
 w ) )  =  ( w  e. 
om  |->  ( F `  w ) )
197, 18fnmpti 5715 . . . . . 6  |-  ( w  e.  om  |->  ( F `
 w ) )  Fn  om
20 fvelrnb 5920 . . . . . 6  |-  ( ( w  e.  om  |->  ( F `  w ) )  Fn  om  ->  ( y  e.  ran  (
w  e.  om  |->  ( F `  w ) )  <->  E. x  e.  om  ( ( w  e. 
om  |->  ( F `  w ) ) `  x )  =  y ) )
2119, 20ax-mp 5 . . . . 5  |-  ( y  e.  ran  ( w  e.  om  |->  ( F `
 w ) )  <->  E. x  e.  om  ( ( w  e. 
om  |->  ( F `  w ) ) `  x )  =  y )
22 peano2 6719 . . . . . . . . . . 11  |-  ( x  e.  om  ->  suc  x  e.  om )
23 fveq2 5872 . . . . . . . . . . . 12  |-  ( w  =  suc  x  -> 
( F `  w
)  =  ( F `
 suc  x )
)
24 fvex 5882 . . . . . . . . . . . 12  |-  ( F `
 suc  x )  e.  _V
2523, 18, 24fvmpt 5956 . . . . . . . . . . 11  |-  ( suc  x  e.  om  ->  ( ( w  e.  om  |->  ( F `  w ) ) `  suc  x
)  =  ( F `
 suc  x )
)
2622, 25syl 16 . . . . . . . . . 10  |-  ( x  e.  om  ->  (
( w  e.  om  |->  ( F `  w ) ) `  suc  x
)  =  ( F `
 suc  x )
)
27 fnfvelrn 6029 . . . . . . . . . . 11  |-  ( ( ( w  e.  om  |->  ( F `  w ) )  Fn  om  /\  suc  x  e.  om )  ->  ( ( w  e. 
om  |->  ( F `  w ) ) `  suc  x )  e.  ran  ( w  e.  om  |->  ( F `  w ) ) )
2819, 22, 27sylancr 663 . . . . . . . . . 10  |-  ( x  e.  om  ->  (
( w  e.  om  |->  ( F `  w ) ) `  suc  x
)  e.  ran  (
w  e.  om  |->  ( F `  w ) ) )
2926, 28eqeltrrd 2546 . . . . . . . . 9  |-  ( x  e.  om  ->  ( F `  suc  x )  e.  ran  ( w  e.  om  |->  ( F `
 w ) ) )
30 epel 4803 . . . . . . . . . . . . 13  |-  ( z  _E  y  <->  z  e.  y )
31 eleq1 2529 . . . . . . . . . . . . 13  |-  ( z  =  ( F `  suc  x )  ->  (
z  e.  y  <->  ( F `  suc  x )  e.  y ) )
3230, 31syl5bb 257 . . . . . . . . . . . 12  |-  ( z  =  ( F `  suc  x )  ->  (
z  _E  y  <->  ( F `  suc  x )  e.  y ) )
3332notbid 294 . . . . . . . . . . 11  |-  ( z  =  ( F `  suc  x )  ->  ( -.  z  _E  y  <->  -.  ( F `  suc  x )  e.  y ) )
34 df-nel 2655 . . . . . . . . . . 11  |-  ( ( F `  suc  x
)  e/  y  <->  -.  ( F `  suc  x )  e.  y )
3533, 34syl6bbr 263 . . . . . . . . . 10  |-  ( z  =  ( F `  suc  x )  ->  ( -.  z  _E  y  <->  ( F `  suc  x
)  e/  y )
)
3635rspccv 3207 . . . . . . . . 9  |-  ( A. z  e.  ran  ( w  e.  om  |->  ( F `
 w ) )  -.  z  _E  y  ->  ( ( F `  suc  x )  e.  ran  ( w  e.  om  |->  ( F `  w ) )  ->  ( F `  suc  x )  e/  y ) )
3729, 36syl5com 30 . . . . . . . 8  |-  ( x  e.  om  ->  ( A. z  e.  ran  ( w  e.  om  |->  ( F `  w ) )  -.  z  _E  y  ->  ( F `  suc  x )  e/  y ) )
38 fveq2 5872 . . . . . . . . . . . 12  |-  ( w  =  x  ->  ( F `  w )  =  ( F `  x ) )
39 fvex 5882 . . . . . . . . . . . 12  |-  ( F `
 x )  e. 
_V
4038, 18, 39fvmpt 5956 . . . . . . . . . . 11  |-  ( x  e.  om  ->  (
( w  e.  om  |->  ( F `  w ) ) `  x )  =  ( F `  x ) )
41 eqeq1 2461 . . . . . . . . . . 11  |-  ( ( ( w  e.  om  |->  ( F `  w ) ) `  x )  =  y  ->  (
( ( w  e. 
om  |->  ( F `  w ) ) `  x )  =  ( F `  x )  <-> 
y  =  ( F `
 x ) ) )
4240, 41syl5ibcom 220 . . . . . . . . . 10  |-  ( x  e.  om  ->  (
( ( w  e. 
om  |->  ( F `  w ) ) `  x )  =  y  ->  y  =  ( F `  x ) ) )
43 neleq2 2797 . . . . . . . . . . 11  |-  ( y  =  ( F `  x )  ->  (
( F `  suc  x )  e/  y  <->  ( F `  suc  x
)  e/  ( F `  x ) ) )
4443biimpd 207 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  ->  (
( F `  suc  x )  e/  y  ->  ( F `  suc  x )  e/  ( F `  x )
) )
4542, 44syl6 33 . . . . . . . . 9  |-  ( x  e.  om  ->  (
( ( w  e. 
om  |->  ( F `  w ) ) `  x )  =  y  ->  ( ( F `
 suc  x )  e/  y  ->  ( F `
 suc  x )  e/  ( F `  x
) ) ) )
4645com23 78 . . . . . . . 8  |-  ( x  e.  om  ->  (
( F `  suc  x )  e/  y  ->  ( ( ( w  e.  om  |->  ( F `
 w ) ) `
 x )  =  y  ->  ( F `  suc  x )  e/  ( F `  x ) ) ) )
4737, 46syld 44 . . . . . . 7  |-  ( x  e.  om  ->  ( A. z  e.  ran  ( w  e.  om  |->  ( F `  w ) )  -.  z  _E  y  ->  ( (
( w  e.  om  |->  ( F `  w ) ) `  x )  =  y  ->  ( F `  suc  x )  e/  ( F `  x ) ) ) )
4847com12 31 . . . . . 6  |-  ( A. z  e.  ran  ( w  e.  om  |->  ( F `
 w ) )  -.  z  _E  y  ->  ( x  e.  om  ->  ( ( ( w  e.  om  |->  ( F `
 w ) ) `
 x )  =  y  ->  ( F `  suc  x )  e/  ( F `  x ) ) ) )
4948reximdvai 2929 . . . . 5  |-  ( A. z  e.  ran  ( w  e.  om  |->  ( F `
 w ) )  -.  z  _E  y  ->  ( E. x  e. 
om  ( ( w  e.  om  |->  ( F `
 w ) ) `
 x )  =  y  ->  E. x  e.  om  ( F `  suc  x )  e/  ( F `  x )
) )
5021, 49syl5bi 217 . . . 4  |-  ( A. z  e.  ran  ( w  e.  om  |->  ( F `
 w ) )  -.  z  _E  y  ->  ( y  e.  ran  ( w  e.  om  |->  ( F `  w ) )  ->  E. x  e.  om  ( F `  suc  x )  e/  ( F `  x )
) )
5150com12 31 . . 3  |-  ( y  e.  ran  ( w  e.  om  |->  ( F `
 w ) )  ->  ( A. z  e.  ran  ( w  e. 
om  |->  ( F `  w ) )  -.  z  _E  y  ->  E. x  e.  om  ( F `  suc  x
)  e/  ( F `  x ) ) )
5251rexlimiv 2943 . 2  |-  ( E. y  e.  ran  (
w  e.  om  |->  ( F `  w ) ) A. z  e. 
ran  ( w  e. 
om  |->  ( F `  w ) )  -.  z  _E  y  ->  E. x  e.  om  ( F `  suc  x
)  e/  ( F `  x ) )
5317, 52ax-mp 5 1  |-  E. x  e.  om  ( F `  suc  x )  e/  ( F `  x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    = wceq 1395    e. wcel 1819    =/= wne 2652    e/ wnel 2653   A.wral 2807   E.wrex 2808   _Vcvv 3109    C_ wss 3471   (/)c0 3793   class class class wbr 4456    |-> cmpt 4515    _E cep 4798    Fr wfr 4844   suc csuc 4889   dom cdm 5008   ran crn 5009    Fn wfn 5589   ` cfv 5594   omcom 6699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pr 4695  ax-un 6591  ax-reg 8036  ax-inf2 8075
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-om 6700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator