MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfep Structured version   Visualization version   Unicode version

Theorem noinfep 8191
Description: Using the Axiom of Regularity in the form zfregfr 8143, show that there are no infinite descending 
e.-chains. Proposition 7.34 of [TakeutiZaring] p. 44. (Contributed by NM, 26-Jan-2006.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
noinfep  |-  E. x  e.  om  ( F `  suc  x )  e/  ( F `  x )
Distinct variable group:    x, F

Proof of Theorem noinfep
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 8174 . . . . 5  |-  om  e.  _V
21mptex 6161 . . . 4  |-  ( w  e.  om  |->  ( F `
 w ) )  e.  _V
32rnex 6754 . . 3  |-  ran  (
w  e.  om  |->  ( F `  w ) )  e.  _V
4 zfregfr 8143 . . 3  |-  _E  Fr  ran  ( w  e.  om  |->  ( F `  w ) )
5 ssid 3463 . . 3  |-  ran  (
w  e.  om  |->  ( F `  w ) )  C_  ran  ( w  e.  om  |->  ( F `
 w ) )
6 dmmptg 5351 . . . . . 6  |-  ( A. w  e.  om  ( F `  w )  e.  _V  ->  dom  ( w  e.  om  |->  ( F `
 w ) )  =  om )
7 fvex 5898 . . . . . . 7  |-  ( F `
 w )  e. 
_V
87a1i 11 . . . . . 6  |-  ( w  e.  om  ->  ( F `  w )  e.  _V )
96, 8mprg 2763 . . . . 5  |-  dom  (
w  e.  om  |->  ( F `  w ) )  =  om
10 peano1 6739 . . . . . 6  |-  (/)  e.  om
1110ne0ii 3750 . . . . 5  |-  om  =/=  (/)
129, 11eqnetri 2706 . . . 4  |-  dom  (
w  e.  om  |->  ( F `  w ) )  =/=  (/)
13 dm0rn0 5070 . . . . 5  |-  ( dom  ( w  e.  om  |->  ( F `  w ) )  =  (/)  <->  ran  ( w  e.  om  |->  ( F `
 w ) )  =  (/) )
1413necon3bii 2688 . . . 4  |-  ( dom  ( w  e.  om  |->  ( F `  w ) )  =/=  (/)  <->  ran  ( w  e.  om  |->  ( F `
 w ) )  =/=  (/) )
1512, 14mpbi 213 . . 3  |-  ran  (
w  e.  om  |->  ( F `  w ) )  =/=  (/)
16 fri 4815 . . 3  |-  ( ( ( ran  ( w  e.  om  |->  ( F `
 w ) )  e.  _V  /\  _E  Fr  ran  ( w  e. 
om  |->  ( F `  w ) ) )  /\  ( ran  (
w  e.  om  |->  ( F `  w ) )  C_  ran  ( w  e.  om  |->  ( F `
 w ) )  /\  ran  ( w  e.  om  |->  ( F `
 w ) )  =/=  (/) ) )  ->  E. y  e.  ran  ( w  e.  om  |->  ( F `  w ) ) A. z  e. 
ran  ( w  e. 
om  |->  ( F `  w ) )  -.  z  _E  y )
173, 4, 5, 15, 16mp4an 684 . 2  |-  E. y  e.  ran  ( w  e. 
om  |->  ( F `  w ) ) A. z  e.  ran  ( w  e.  om  |->  ( F `
 w ) )  -.  z  _E  y
18 eqid 2462 . . . . . . 7  |-  ( w  e.  om  |->  ( F `
 w ) )  =  ( w  e. 
om  |->  ( F `  w ) )
197, 18fnmpti 5728 . . . . . 6  |-  ( w  e.  om  |->  ( F `
 w ) )  Fn  om
20 fvelrnb 5935 . . . . . 6  |-  ( ( w  e.  om  |->  ( F `  w ) )  Fn  om  ->  ( y  e.  ran  (
w  e.  om  |->  ( F `  w ) )  <->  E. x  e.  om  ( ( w  e. 
om  |->  ( F `  w ) ) `  x )  =  y ) )
2119, 20ax-mp 5 . . . . 5  |-  ( y  e.  ran  ( w  e.  om  |->  ( F `
 w ) )  <->  E. x  e.  om  ( ( w  e. 
om  |->  ( F `  w ) ) `  x )  =  y )
22 peano2 6740 . . . . . . . . . . 11  |-  ( x  e.  om  ->  suc  x  e.  om )
23 fveq2 5888 . . . . . . . . . . . 12  |-  ( w  =  suc  x  -> 
( F `  w
)  =  ( F `
 suc  x )
)
24 fvex 5898 . . . . . . . . . . . 12  |-  ( F `
 suc  x )  e.  _V
2523, 18, 24fvmpt 5971 . . . . . . . . . . 11  |-  ( suc  x  e.  om  ->  ( ( w  e.  om  |->  ( F `  w ) ) `  suc  x
)  =  ( F `
 suc  x )
)
2622, 25syl 17 . . . . . . . . . 10  |-  ( x  e.  om  ->  (
( w  e.  om  |->  ( F `  w ) ) `  suc  x
)  =  ( F `
 suc  x )
)
27 fnfvelrn 6042 . . . . . . . . . . 11  |-  ( ( ( w  e.  om  |->  ( F `  w ) )  Fn  om  /\  suc  x  e.  om )  ->  ( ( w  e. 
om  |->  ( F `  w ) ) `  suc  x )  e.  ran  ( w  e.  om  |->  ( F `  w ) ) )
2819, 22, 27sylancr 674 . . . . . . . . . 10  |-  ( x  e.  om  ->  (
( w  e.  om  |->  ( F `  w ) ) `  suc  x
)  e.  ran  (
w  e.  om  |->  ( F `  w ) ) )
2926, 28eqeltrrd 2541 . . . . . . . . 9  |-  ( x  e.  om  ->  ( F `  suc  x )  e.  ran  ( w  e.  om  |->  ( F `
 w ) ) )
30 epel 4767 . . . . . . . . . . . . 13  |-  ( z  _E  y  <->  z  e.  y )
31 eleq1 2528 . . . . . . . . . . . . 13  |-  ( z  =  ( F `  suc  x )  ->  (
z  e.  y  <->  ( F `  suc  x )  e.  y ) )
3230, 31syl5bb 265 . . . . . . . . . . . 12  |-  ( z  =  ( F `  suc  x )  ->  (
z  _E  y  <->  ( F `  suc  x )  e.  y ) )
3332notbid 300 . . . . . . . . . . 11  |-  ( z  =  ( F `  suc  x )  ->  ( -.  z  _E  y  <->  -.  ( F `  suc  x )  e.  y ) )
34 df-nel 2636 . . . . . . . . . . 11  |-  ( ( F `  suc  x
)  e/  y  <->  -.  ( F `  suc  x )  e.  y )
3533, 34syl6bbr 271 . . . . . . . . . 10  |-  ( z  =  ( F `  suc  x )  ->  ( -.  z  _E  y  <->  ( F `  suc  x
)  e/  y )
)
3635rspccv 3159 . . . . . . . . 9  |-  ( A. z  e.  ran  ( w  e.  om  |->  ( F `
 w ) )  -.  z  _E  y  ->  ( ( F `  suc  x )  e.  ran  ( w  e.  om  |->  ( F `  w ) )  ->  ( F `  suc  x )  e/  y ) )
3729, 36syl5com 31 . . . . . . . 8  |-  ( x  e.  om  ->  ( A. z  e.  ran  ( w  e.  om  |->  ( F `  w ) )  -.  z  _E  y  ->  ( F `  suc  x )  e/  y ) )
38 fveq2 5888 . . . . . . . . . . . 12  |-  ( w  =  x  ->  ( F `  w )  =  ( F `  x ) )
39 fvex 5898 . . . . . . . . . . . 12  |-  ( F `
 x )  e. 
_V
4038, 18, 39fvmpt 5971 . . . . . . . . . . 11  |-  ( x  e.  om  ->  (
( w  e.  om  |->  ( F `  w ) ) `  x )  =  ( F `  x ) )
41 eqeq1 2466 . . . . . . . . . . 11  |-  ( ( ( w  e.  om  |->  ( F `  w ) ) `  x )  =  y  ->  (
( ( w  e. 
om  |->  ( F `  w ) ) `  x )  =  ( F `  x )  <-> 
y  =  ( F `
 x ) ) )
4240, 41syl5ibcom 228 . . . . . . . . . 10  |-  ( x  e.  om  ->  (
( ( w  e. 
om  |->  ( F `  w ) ) `  x )  =  y  ->  y  =  ( F `  x ) ) )
43 neleq2 2742 . . . . . . . . . . 11  |-  ( y  =  ( F `  x )  ->  (
( F `  suc  x )  e/  y  <->  ( F `  suc  x
)  e/  ( F `  x ) ) )
4443biimpd 212 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  ->  (
( F `  suc  x )  e/  y  ->  ( F `  suc  x )  e/  ( F `  x )
) )
4542, 44syl6 34 . . . . . . . . 9  |-  ( x  e.  om  ->  (
( ( w  e. 
om  |->  ( F `  w ) ) `  x )  =  y  ->  ( ( F `
 suc  x )  e/  y  ->  ( F `
 suc  x )  e/  ( F `  x
) ) ) )
4645com23 81 . . . . . . . 8  |-  ( x  e.  om  ->  (
( F `  suc  x )  e/  y  ->  ( ( ( w  e.  om  |->  ( F `
 w ) ) `
 x )  =  y  ->  ( F `  suc  x )  e/  ( F `  x ) ) ) )
4737, 46syld 45 . . . . . . 7  |-  ( x  e.  om  ->  ( A. z  e.  ran  ( w  e.  om  |->  ( F `  w ) )  -.  z  _E  y  ->  ( (
( w  e.  om  |->  ( F `  w ) ) `  x )  =  y  ->  ( F `  suc  x )  e/  ( F `  x ) ) ) )
4847com12 32 . . . . . 6  |-  ( A. z  e.  ran  ( w  e.  om  |->  ( F `
 w ) )  -.  z  _E  y  ->  ( x  e.  om  ->  ( ( ( w  e.  om  |->  ( F `
 w ) ) `
 x )  =  y  ->  ( F `  suc  x )  e/  ( F `  x ) ) ) )
4948reximdvai 2871 . . . . 5  |-  ( A. z  e.  ran  ( w  e.  om  |->  ( F `
 w ) )  -.  z  _E  y  ->  ( E. x  e. 
om  ( ( w  e.  om  |->  ( F `
 w ) ) `
 x )  =  y  ->  E. x  e.  om  ( F `  suc  x )  e/  ( F `  x )
) )
5021, 49syl5bi 225 . . . 4  |-  ( A. z  e.  ran  ( w  e.  om  |->  ( F `
 w ) )  -.  z  _E  y  ->  ( y  e.  ran  ( w  e.  om  |->  ( F `  w ) )  ->  E. x  e.  om  ( F `  suc  x )  e/  ( F `  x )
) )
5150com12 32 . . 3  |-  ( y  e.  ran  ( w  e.  om  |->  ( F `
 w ) )  ->  ( A. z  e.  ran  ( w  e. 
om  |->  ( F `  w ) )  -.  z  _E  y  ->  E. x  e.  om  ( F `  suc  x
)  e/  ( F `  x ) ) )
5251rexlimiv 2885 . 2  |-  ( E. y  e.  ran  (
w  e.  om  |->  ( F `  w ) ) A. z  e. 
ran  ( w  e. 
om  |->  ( F `  w ) )  -.  z  _E  y  ->  E. x  e.  om  ( F `  suc  x
)  e/  ( F `  x ) )
5317, 52ax-mp 5 1  |-  E. x  e.  om  ( F `  suc  x )  e/  ( F `  x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    = wceq 1455    e. wcel 1898    =/= wne 2633    e/ wnel 2634   A.wral 2749   E.wrex 2750   _Vcvv 3057    C_ wss 3416   (/)c0 3743   class class class wbr 4416    |-> cmpt 4475    _E cep 4762    Fr wfr 4809   dom cdm 4853   ran crn 4854   suc csuc 5444    Fn wfn 5596   ` cfv 5601   omcom 6719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pr 4653  ax-un 6610  ax-reg 8133  ax-inf2 8172
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-om 6720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator