Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nofulllem1 Structured version   Unicode version

Theorem nofulllem1 29430
Description: Lemma for nofull (future) . The full statement of the axiom when  R is empty. (Contributed by Scott Fenton, 3-Aug-2011.)
Assertion
Ref Expression
nofulllem1  |-  ( R  =  (/)  ->  ( ( ( L  C_  No  /\  L  e.  V )  /\  ( R  C_  No  /\  R  e.  W
)  /\  A. x  e.  L  A. y  e.  R  x <s y )  ->  E. z  e.  No  ( A. x  e.  L  x <s z  /\  A. y  e.  R  z <s y  /\  ( bday `  z )  C_  suc  U. ( bday " ( L  u.  R )
) ) ) )
Distinct variable groups:    x, z, L    y, R    z, R
Allowed substitution hints:    R( x)    L( y)    V( x, y, z)    W( x, y, z)

Proof of Theorem nofulllem1
StepHypRef Expression
1 nobndup 29428 . . 3  |-  ( ( L  C_  No  /\  L  e.  V )  ->  E. z  e.  No  ( A. x  e.  L  x <s z  /\  ( bday `  z )  C_  suc  U. ( bday " L
) ) )
213ad2ant1 1016 . 2  |-  ( ( ( L  C_  No  /\  L  e.  V )  /\  ( R  C_  No  /\  R  e.  W
)  /\  A. x  e.  L  A. y  e.  R  x <s y )  ->  E. z  e.  No  ( A. x  e.  L  x <s z  /\  ( bday `  z )  C_  suc  U. ( bday " L
) ) )
3 raleq 3038 . . . . . . 7  |-  ( R  =  (/)  ->  ( A. y  e.  R  z
<s y  <->  A. y  e.  (/)  z <s
y ) )
4 uneq2 3634 . . . . . . . . . . . 12  |-  ( R  =  (/)  ->  ( L  u.  R )  =  ( L  u.  (/) ) )
5 un0 3792 . . . . . . . . . . . 12  |-  ( L  u.  (/) )  =  L
64, 5syl6eq 2498 . . . . . . . . . . 11  |-  ( R  =  (/)  ->  ( L  u.  R )  =  L )
76imaeq2d 5323 . . . . . . . . . 10  |-  ( R  =  (/)  ->  ( bday " ( L  u.  R ) )  =  ( bday " L
) )
87unieqd 4240 . . . . . . . . 9  |-  ( R  =  (/)  ->  U. ( bday " ( L  u.  R ) )  = 
U. ( bday " L
) )
9 suceq 4929 . . . . . . . . 9  |-  ( U. ( bday " ( L  u.  R ) )  =  U. ( bday " L )  ->  suc  U. ( bday " ( L  u.  R )
)  =  suc  U. ( bday " L ) )
108, 9syl 16 . . . . . . . 8  |-  ( R  =  (/)  ->  suc  U. ( bday " ( L  u.  R ) )  =  suc  U. ( bday " L ) )
1110sseq2d 3514 . . . . . . 7  |-  ( R  =  (/)  ->  ( (
bday `  z )  C_ 
suc  U. ( bday " ( L  u.  R )
)  <->  ( bday `  z
)  C_  suc  U. ( bday " L ) ) )
123, 11anbi12d 710 . . . . . 6  |-  ( R  =  (/)  ->  ( ( A. y  e.  R  z <s y  /\  ( bday `  z )  C_ 
suc  U. ( bday " ( L  u.  R )
) )  <->  ( A. y  e.  (/)  z <s y  /\  ( bday `  z )  C_  suc  U. ( bday " L
) ) ) )
13 ral0 3915 . . . . . . 7  |-  A. y  e.  (/)  z <s
y
1413biantrur 506 . . . . . 6  |-  ( (
bday `  z )  C_ 
suc  U. ( bday " L
)  <->  ( A. y  e.  (/)  z <s
y  /\  ( bday `  z )  C_  suc  U. ( bday " L
) ) )
1512, 14syl6rbbr 264 . . . . 5  |-  ( R  =  (/)  ->  ( (
bday `  z )  C_ 
suc  U. ( bday " L
)  <->  ( A. y  e.  R  z <s y  /\  ( bday `  z )  C_  suc  U. ( bday " ( L  u.  R )
) ) ) )
1615anbi2d 703 . . . 4  |-  ( R  =  (/)  ->  ( ( A. x  e.  L  x <s z  /\  ( bday `  z )  C_ 
suc  U. ( bday " L
) )  <->  ( A. x  e.  L  x <s z  /\  ( A. y  e.  R  z <s y  /\  ( bday `  z )  C_ 
suc  U. ( bday " ( L  u.  R )
) ) ) ) )
17 3anass 976 . . . 4  |-  ( ( A. x  e.  L  x <s z  /\  A. y  e.  R  z <s y  /\  ( bday `  z )  C_ 
suc  U. ( bday " ( L  u.  R )
) )  <->  ( A. x  e.  L  x <s z  /\  ( A. y  e.  R  z <s y  /\  ( bday `  z )  C_ 
suc  U. ( bday " ( L  u.  R )
) ) ) )
1816, 17syl6bbr 263 . . 3  |-  ( R  =  (/)  ->  ( ( A. x  e.  L  x <s z  /\  ( bday `  z )  C_ 
suc  U. ( bday " L
) )  <->  ( A. x  e.  L  x <s z  /\  A. y  e.  R  z
<s y  /\  ( bday `  z )  C_ 
suc  U. ( bday " ( L  u.  R )
) ) ) )
1918rexbidv 2952 . 2  |-  ( R  =  (/)  ->  ( E. z  e.  No  ( A. x  e.  L  x <s z  /\  ( bday `  z )  C_ 
suc  U. ( bday " L
) )  <->  E. z  e.  No  ( A. x  e.  L  x <s z  /\  A. y  e.  R  z <s y  /\  ( bday `  z )  C_  suc  U. ( bday " ( L  u.  R )
) ) ) )
202, 19syl5ib 219 1  |-  ( R  =  (/)  ->  ( ( ( L  C_  No  /\  L  e.  V )  /\  ( R  C_  No  /\  R  e.  W
)  /\  A. x  e.  L  A. y  e.  R  x <s y )  ->  E. z  e.  No  ( A. x  e.  L  x <s z  /\  A. y  e.  R  z <s y  /\  ( bday `  z )  C_  suc  U. ( bday " ( L  u.  R )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802   A.wral 2791   E.wrex 2792    u. cun 3456    C_ wss 3458   (/)c0 3767   U.cuni 4230   class class class wbr 4433   suc csuc 4866   "cima 4988   ` cfv 5574   Nocsur 29368   <scslt 29369   bdaycbday 29370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-1o 7128  df-2o 7129  df-no 29371  df-slt 29372  df-bday 29373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator